Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/LiveInterval.h b/linux-x64/clang/include/llvm/CodeGen/LiveInterval.h
new file mode 100644
index 0000000..f4fa872
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/LiveInterval.h
@@ -0,0 +1,943 @@
+//===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveRange and LiveInterval classes.  Given some
+// numbering of each the machine instructions an interval [i, j) is said to be a
+// live range for register v if there is no instruction with number j' >= j
+// such that v is live at j' and there is no instruction with number i' < i such
+// that v is live at i'. In this implementation ranges can have holes,
+// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
+// individual segment is represented as an instance of LiveRange::Segment,
+// and the whole range is represented as an instance of LiveRange.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
+#define LLVM_CODEGEN_LIVEINTERVAL_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/IntEqClasses.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <functional>
+#include <memory>
+#include <set>
+#include <tuple>
+#include <utility>
+
+namespace llvm {
+
+  class CoalescerPair;
+  class LiveIntervals;
+  class MachineRegisterInfo;
+  class raw_ostream;
+
+  /// VNInfo - Value Number Information.
+  /// This class holds information about a machine level values, including
+  /// definition and use points.
+  ///
+  class VNInfo {
+  public:
+    using Allocator = BumpPtrAllocator;
+
+    /// The ID number of this value.
+    unsigned id;
+
+    /// The index of the defining instruction.
+    SlotIndex def;
+
+    /// VNInfo constructor.
+    VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
+
+    /// VNInfo constructor, copies values from orig, except for the value number.
+    VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
+
+    /// Copy from the parameter into this VNInfo.
+    void copyFrom(VNInfo &src) {
+      def = src.def;
+    }
+
+    /// Returns true if this value is defined by a PHI instruction (or was,
+    /// PHI instructions may have been eliminated).
+    /// PHI-defs begin at a block boundary, all other defs begin at register or
+    /// EC slots.
+    bool isPHIDef() const { return def.isBlock(); }
+
+    /// Returns true if this value is unused.
+    bool isUnused() const { return !def.isValid(); }
+
+    /// Mark this value as unused.
+    void markUnused() { def = SlotIndex(); }
+  };
+
+  /// Result of a LiveRange query. This class hides the implementation details
+  /// of live ranges, and it should be used as the primary interface for
+  /// examining live ranges around instructions.
+  class LiveQueryResult {
+    VNInfo *const EarlyVal;
+    VNInfo *const LateVal;
+    const SlotIndex EndPoint;
+    const bool Kill;
+
+  public:
+    LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
+                    bool Kill)
+      : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
+    {}
+
+    /// Return the value that is live-in to the instruction. This is the value
+    /// that will be read by the instruction's use operands. Return NULL if no
+    /// value is live-in.
+    VNInfo *valueIn() const {
+      return EarlyVal;
+    }
+
+    /// Return true if the live-in value is killed by this instruction. This
+    /// means that either the live range ends at the instruction, or it changes
+    /// value.
+    bool isKill() const {
+      return Kill;
+    }
+
+    /// Return true if this instruction has a dead def.
+    bool isDeadDef() const {
+      return EndPoint.isDead();
+    }
+
+    /// Return the value leaving the instruction, if any. This can be a
+    /// live-through value, or a live def. A dead def returns NULL.
+    VNInfo *valueOut() const {
+      return isDeadDef() ? nullptr : LateVal;
+    }
+
+    /// Returns the value alive at the end of the instruction, if any. This can
+    /// be a live-through value, a live def or a dead def.
+    VNInfo *valueOutOrDead() const {
+      return LateVal;
+    }
+
+    /// Return the value defined by this instruction, if any. This includes
+    /// dead defs, it is the value created by the instruction's def operands.
+    VNInfo *valueDefined() const {
+      return EarlyVal == LateVal ? nullptr : LateVal;
+    }
+
+    /// Return the end point of the last live range segment to interact with
+    /// the instruction, if any.
+    ///
+    /// The end point is an invalid SlotIndex only if the live range doesn't
+    /// intersect the instruction at all.
+    ///
+    /// The end point may be at or past the end of the instruction's basic
+    /// block. That means the value was live out of the block.
+    SlotIndex endPoint() const {
+      return EndPoint;
+    }
+  };
+
+  /// This class represents the liveness of a register, stack slot, etc.
+  /// It manages an ordered list of Segment objects.
+  /// The Segments are organized in a static single assignment form: At places
+  /// where a new value is defined or different values reach a CFG join a new
+  /// segment with a new value number is used.
+  class LiveRange {
+  public:
+    /// This represents a simple continuous liveness interval for a value.
+    /// The start point is inclusive, the end point exclusive. These intervals
+    /// are rendered as [start,end).
+    struct Segment {
+      SlotIndex start;  // Start point of the interval (inclusive)
+      SlotIndex end;    // End point of the interval (exclusive)
+      VNInfo *valno = nullptr; // identifier for the value contained in this
+                               // segment.
+
+      Segment() = default;
+
+      Segment(SlotIndex S, SlotIndex E, VNInfo *V)
+        : start(S), end(E), valno(V) {
+        assert(S < E && "Cannot create empty or backwards segment");
+      }
+
+      /// Return true if the index is covered by this segment.
+      bool contains(SlotIndex I) const {
+        return start <= I && I < end;
+      }
+
+      /// Return true if the given interval, [S, E), is covered by this segment.
+      bool containsInterval(SlotIndex S, SlotIndex E) const {
+        assert((S < E) && "Backwards interval?");
+        return (start <= S && S < end) && (start < E && E <= end);
+      }
+
+      bool operator<(const Segment &Other) const {
+        return std::tie(start, end) < std::tie(Other.start, Other.end);
+      }
+      bool operator==(const Segment &Other) const {
+        return start == Other.start && end == Other.end;
+      }
+
+      void dump() const;
+    };
+
+    using Segments = SmallVector<Segment, 2>;
+    using VNInfoList = SmallVector<VNInfo *, 2>;
+
+    Segments segments;   // the liveness segments
+    VNInfoList valnos;   // value#'s
+
+    // The segment set is used temporarily to accelerate initial computation
+    // of live ranges of physical registers in computeRegUnitRange.
+    // After that the set is flushed to the segment vector and deleted.
+    using SegmentSet = std::set<Segment>;
+    std::unique_ptr<SegmentSet> segmentSet;
+
+    using iterator = Segments::iterator;
+    using const_iterator = Segments::const_iterator;
+
+    iterator begin() { return segments.begin(); }
+    iterator end()   { return segments.end(); }
+
+    const_iterator begin() const { return segments.begin(); }
+    const_iterator end() const  { return segments.end(); }
+
+    using vni_iterator = VNInfoList::iterator;
+    using const_vni_iterator = VNInfoList::const_iterator;
+
+    vni_iterator vni_begin() { return valnos.begin(); }
+    vni_iterator vni_end()   { return valnos.end(); }
+
+    const_vni_iterator vni_begin() const { return valnos.begin(); }
+    const_vni_iterator vni_end() const   { return valnos.end(); }
+
+    /// Constructs a new LiveRange object.
+    LiveRange(bool UseSegmentSet = false)
+        : segmentSet(UseSegmentSet ? llvm::make_unique<SegmentSet>()
+                                   : nullptr) {}
+
+    /// Constructs a new LiveRange object by copying segments and valnos from
+    /// another LiveRange.
+    LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
+      assert(Other.segmentSet == nullptr &&
+             "Copying of LiveRanges with active SegmentSets is not supported");
+      assign(Other, Allocator);
+    }
+
+    /// Copies values numbers and live segments from \p Other into this range.
+    void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
+      if (this == &Other)
+        return;
+
+      assert(Other.segmentSet == nullptr &&
+             "Copying of LiveRanges with active SegmentSets is not supported");
+      // Duplicate valnos.
+      for (const VNInfo *VNI : Other.valnos)
+        createValueCopy(VNI, Allocator);
+      // Now we can copy segments and remap their valnos.
+      for (const Segment &S : Other.segments)
+        segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
+    }
+
+    /// advanceTo - Advance the specified iterator to point to the Segment
+    /// containing the specified position, or end() if the position is past the
+    /// end of the range.  If no Segment contains this position, but the
+    /// position is in a hole, this method returns an iterator pointing to the
+    /// Segment immediately after the hole.
+    iterator advanceTo(iterator I, SlotIndex Pos) {
+      assert(I != end());
+      if (Pos >= endIndex())
+        return end();
+      while (I->end <= Pos) ++I;
+      return I;
+    }
+
+    const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
+      assert(I != end());
+      if (Pos >= endIndex())
+        return end();
+      while (I->end <= Pos) ++I;
+      return I;
+    }
+
+    /// find - Return an iterator pointing to the first segment that ends after
+    /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
+    /// when searching large ranges.
+    ///
+    /// If Pos is contained in a Segment, that segment is returned.
+    /// If Pos is in a hole, the following Segment is returned.
+    /// If Pos is beyond endIndex, end() is returned.
+    iterator find(SlotIndex Pos);
+
+    const_iterator find(SlotIndex Pos) const {
+      return const_cast<LiveRange*>(this)->find(Pos);
+    }
+
+    void clear() {
+      valnos.clear();
+      segments.clear();
+    }
+
+    size_t size() const {
+      return segments.size();
+    }
+
+    bool hasAtLeastOneValue() const { return !valnos.empty(); }
+
+    bool containsOneValue() const { return valnos.size() == 1; }
+
+    unsigned getNumValNums() const { return (unsigned)valnos.size(); }
+
+    /// getValNumInfo - Returns pointer to the specified val#.
+    ///
+    inline VNInfo *getValNumInfo(unsigned ValNo) {
+      return valnos[ValNo];
+    }
+    inline const VNInfo *getValNumInfo(unsigned ValNo) const {
+      return valnos[ValNo];
+    }
+
+    /// containsValue - Returns true if VNI belongs to this range.
+    bool containsValue(const VNInfo *VNI) const {
+      return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
+    }
+
+    /// getNextValue - Create a new value number and return it.  MIIdx specifies
+    /// the instruction that defines the value number.
+    VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
+      VNInfo *VNI =
+        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
+      valnos.push_back(VNI);
+      return VNI;
+    }
+
+    /// createDeadDef - Make sure the range has a value defined at Def.
+    /// If one already exists, return it. Otherwise allocate a new value and
+    /// add liveness for a dead def.
+    VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
+
+    /// Create a def of value @p VNI. Return @p VNI. If there already exists
+    /// a definition at VNI->def, the value defined there must be @p VNI.
+    VNInfo *createDeadDef(VNInfo *VNI);
+
+    /// Create a copy of the given value. The new value will be identical except
+    /// for the Value number.
+    VNInfo *createValueCopy(const VNInfo *orig,
+                            VNInfo::Allocator &VNInfoAllocator) {
+      VNInfo *VNI =
+        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
+      valnos.push_back(VNI);
+      return VNI;
+    }
+
+    /// RenumberValues - Renumber all values in order of appearance and remove
+    /// unused values.
+    void RenumberValues();
+
+    /// MergeValueNumberInto - This method is called when two value numbers
+    /// are found to be equivalent.  This eliminates V1, replacing all
+    /// segments with the V1 value number with the V2 value number.  This can
+    /// cause merging of V1/V2 values numbers and compaction of the value space.
+    VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
+
+    /// Merge all of the live segments of a specific val# in RHS into this live
+    /// range as the specified value number. The segments in RHS are allowed
+    /// to overlap with segments in the current range, it will replace the
+    /// value numbers of the overlaped live segments with the specified value
+    /// number.
+    void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
+
+    /// MergeValueInAsValue - Merge all of the segments of a specific val#
+    /// in RHS into this live range as the specified value number.
+    /// The segments in RHS are allowed to overlap with segments in the
+    /// current range, but only if the overlapping segments have the
+    /// specified value number.
+    void MergeValueInAsValue(const LiveRange &RHS,
+                             const VNInfo *RHSValNo, VNInfo *LHSValNo);
+
+    bool empty() const { return segments.empty(); }
+
+    /// beginIndex - Return the lowest numbered slot covered.
+    SlotIndex beginIndex() const {
+      assert(!empty() && "Call to beginIndex() on empty range.");
+      return segments.front().start;
+    }
+
+    /// endNumber - return the maximum point of the range of the whole,
+    /// exclusive.
+    SlotIndex endIndex() const {
+      assert(!empty() && "Call to endIndex() on empty range.");
+      return segments.back().end;
+    }
+
+    bool expiredAt(SlotIndex index) const {
+      return index >= endIndex();
+    }
+
+    bool liveAt(SlotIndex index) const {
+      const_iterator r = find(index);
+      return r != end() && r->start <= index;
+    }
+
+    /// Return the segment that contains the specified index, or null if there
+    /// is none.
+    const Segment *getSegmentContaining(SlotIndex Idx) const {
+      const_iterator I = FindSegmentContaining(Idx);
+      return I == end() ? nullptr : &*I;
+    }
+
+    /// Return the live segment that contains the specified index, or null if
+    /// there is none.
+    Segment *getSegmentContaining(SlotIndex Idx) {
+      iterator I = FindSegmentContaining(Idx);
+      return I == end() ? nullptr : &*I;
+    }
+
+    /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
+    VNInfo *getVNInfoAt(SlotIndex Idx) const {
+      const_iterator I = FindSegmentContaining(Idx);
+      return I == end() ? nullptr : I->valno;
+    }
+
+    /// getVNInfoBefore - Return the VNInfo that is live up to but not
+    /// necessarilly including Idx, or NULL. Use this to find the reaching def
+    /// used by an instruction at this SlotIndex position.
+    VNInfo *getVNInfoBefore(SlotIndex Idx) const {
+      const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
+      return I == end() ? nullptr : I->valno;
+    }
+
+    /// Return an iterator to the segment that contains the specified index, or
+    /// end() if there is none.
+    iterator FindSegmentContaining(SlotIndex Idx) {
+      iterator I = find(Idx);
+      return I != end() && I->start <= Idx ? I : end();
+    }
+
+    const_iterator FindSegmentContaining(SlotIndex Idx) const {
+      const_iterator I = find(Idx);
+      return I != end() && I->start <= Idx ? I : end();
+    }
+
+    /// overlaps - Return true if the intersection of the two live ranges is
+    /// not empty.
+    bool overlaps(const LiveRange &other) const {
+      if (other.empty())
+        return false;
+      return overlapsFrom(other, other.begin());
+    }
+
+    /// overlaps - Return true if the two ranges have overlapping segments
+    /// that are not coalescable according to CP.
+    ///
+    /// Overlapping segments where one range is defined by a coalescable
+    /// copy are allowed.
+    bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
+                  const SlotIndexes&) const;
+
+    /// overlaps - Return true if the live range overlaps an interval specified
+    /// by [Start, End).
+    bool overlaps(SlotIndex Start, SlotIndex End) const;
+
+    /// overlapsFrom - Return true if the intersection of the two live ranges
+    /// is not empty.  The specified iterator is a hint that we can begin
+    /// scanning the Other range starting at I.
+    bool overlapsFrom(const LiveRange &Other, const_iterator I) const;
+
+    /// Returns true if all segments of the @p Other live range are completely
+    /// covered by this live range.
+    /// Adjacent live ranges do not affect the covering:the liverange
+    /// [1,5](5,10] covers (3,7].
+    bool covers(const LiveRange &Other) const;
+
+    /// Add the specified Segment to this range, merging segments as
+    /// appropriate.  This returns an iterator to the inserted segment (which
+    /// may have grown since it was inserted).
+    iterator addSegment(Segment S);
+
+    /// Attempt to extend a value defined after @p StartIdx to include @p Use.
+    /// Both @p StartIdx and @p Use should be in the same basic block. In case
+    /// of subranges, an extension could be prevented by an explicit "undef"
+    /// caused by a <def,read-undef> on a non-overlapping lane. The list of
+    /// location of such "undefs" should be provided in @p Undefs.
+    /// The return value is a pair: the first element is VNInfo of the value
+    /// that was extended (possibly nullptr), the second is a boolean value
+    /// indicating whether an "undef" was encountered.
+    /// If this range is live before @p Use in the basic block that starts at
+    /// @p StartIdx, and there is no intervening "undef", extend it to be live
+    /// up to @p Use, and return the pair {value, false}. If there is no
+    /// segment before @p Use and there is no "undef" between @p StartIdx and
+    /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
+    /// return {nullptr, true}.
+    std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
+        SlotIndex StartIdx, SlotIndex Use);
+
+    /// Simplified version of the above "extendInBlock", which assumes that
+    /// no register lanes are undefined by <def,read-undef> operands.
+    /// If this range is live before @p Use in the basic block that starts
+    /// at @p StartIdx, extend it to be live up to @p Use, and return the
+    /// value. If there is no segment before @p Use, return nullptr.
+    VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
+
+    /// join - Join two live ranges (this, and other) together.  This applies
+    /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
+    /// the ranges are not joinable, this aborts.
+    void join(LiveRange &Other,
+              const int *ValNoAssignments,
+              const int *RHSValNoAssignments,
+              SmallVectorImpl<VNInfo *> &NewVNInfo);
+
+    /// True iff this segment is a single segment that lies between the
+    /// specified boundaries, exclusively. Vregs live across a backedge are not
+    /// considered local. The boundaries are expected to lie within an extended
+    /// basic block, so vregs that are not live out should contain no holes.
+    bool isLocal(SlotIndex Start, SlotIndex End) const {
+      return beginIndex() > Start.getBaseIndex() &&
+        endIndex() < End.getBoundaryIndex();
+    }
+
+    /// Remove the specified segment from this range.  Note that the segment
+    /// must be a single Segment in its entirety.
+    void removeSegment(SlotIndex Start, SlotIndex End,
+                       bool RemoveDeadValNo = false);
+
+    void removeSegment(Segment S, bool RemoveDeadValNo = false) {
+      removeSegment(S.start, S.end, RemoveDeadValNo);
+    }
+
+    /// Remove segment pointed to by iterator @p I from this range.  This does
+    /// not remove dead value numbers.
+    iterator removeSegment(iterator I) {
+      return segments.erase(I);
+    }
+
+    /// Query Liveness at Idx.
+    /// The sub-instruction slot of Idx doesn't matter, only the instruction
+    /// it refers to is considered.
+    LiveQueryResult Query(SlotIndex Idx) const {
+      // Find the segment that enters the instruction.
+      const_iterator I = find(Idx.getBaseIndex());
+      const_iterator E = end();
+      if (I == E)
+        return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
+
+      // Is this an instruction live-in segment?
+      // If Idx is the start index of a basic block, include live-in segments
+      // that start at Idx.getBaseIndex().
+      VNInfo *EarlyVal = nullptr;
+      VNInfo *LateVal  = nullptr;
+      SlotIndex EndPoint;
+      bool Kill = false;
+      if (I->start <= Idx.getBaseIndex()) {
+        EarlyVal = I->valno;
+        EndPoint = I->end;
+        // Move to the potentially live-out segment.
+        if (SlotIndex::isSameInstr(Idx, I->end)) {
+          Kill = true;
+          if (++I == E)
+            return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
+        }
+        // Special case: A PHIDef value can have its def in the middle of a
+        // segment if the value happens to be live out of the layout
+        // predecessor.
+        // Such a value is not live-in.
+        if (EarlyVal->def == Idx.getBaseIndex())
+          EarlyVal = nullptr;
+      }
+      // I now points to the segment that may be live-through, or defined by
+      // this instr. Ignore segments starting after the current instr.
+      if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
+        LateVal = I->valno;
+        EndPoint = I->end;
+      }
+      return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
+    }
+
+    /// removeValNo - Remove all the segments defined by the specified value#.
+    /// Also remove the value# from value# list.
+    void removeValNo(VNInfo *ValNo);
+
+    /// Returns true if the live range is zero length, i.e. no live segments
+    /// span instructions. It doesn't pay to spill such a range.
+    bool isZeroLength(SlotIndexes *Indexes) const {
+      for (const Segment &S : segments)
+        if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
+            S.end.getBaseIndex())
+          return false;
+      return true;
+    }
+
+    // Returns true if any segment in the live range contains any of the
+    // provided slot indexes.  Slots which occur in holes between
+    // segments will not cause the function to return true.
+    bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
+
+    bool operator<(const LiveRange& other) const {
+      const SlotIndex &thisIndex = beginIndex();
+      const SlotIndex &otherIndex = other.beginIndex();
+      return thisIndex < otherIndex;
+    }
+
+    /// Returns true if there is an explicit "undef" between @p Begin
+    /// @p End.
+    bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
+                   SlotIndex End) const {
+      return std::any_of(Undefs.begin(), Undefs.end(),
+                [Begin,End] (SlotIndex Idx) -> bool {
+                  return Begin <= Idx && Idx < End;
+                });
+    }
+
+    /// Flush segment set into the regular segment vector.
+    /// The method is to be called after the live range
+    /// has been created, if use of the segment set was
+    /// activated in the constructor of the live range.
+    void flushSegmentSet();
+
+    void print(raw_ostream &OS) const;
+    void dump() const;
+
+    /// \brief Walk the range and assert if any invariants fail to hold.
+    ///
+    /// Note that this is a no-op when asserts are disabled.
+#ifdef NDEBUG
+    void verify() const {}
+#else
+    void verify() const;
+#endif
+
+  protected:
+    /// Append a segment to the list of segments.
+    void append(const LiveRange::Segment S);
+
+  private:
+    friend class LiveRangeUpdater;
+    void addSegmentToSet(Segment S);
+    void markValNoForDeletion(VNInfo *V);
+  };
+
+  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
+    LR.print(OS);
+    return OS;
+  }
+
+  /// LiveInterval - This class represents the liveness of a register,
+  /// or stack slot.
+  class LiveInterval : public LiveRange {
+  public:
+    using super = LiveRange;
+
+    /// A live range for subregisters. The LaneMask specifies which parts of the
+    /// super register are covered by the interval.
+    /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
+    class SubRange : public LiveRange {
+    public:
+      SubRange *Next = nullptr;
+      LaneBitmask LaneMask;
+
+      /// Constructs a new SubRange object.
+      SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
+
+      /// Constructs a new SubRange object by copying liveness from @p Other.
+      SubRange(LaneBitmask LaneMask, const LiveRange &Other,
+               BumpPtrAllocator &Allocator)
+        : LiveRange(Other, Allocator), LaneMask(LaneMask) {}
+
+      void print(raw_ostream &OS) const;
+      void dump() const;
+    };
+
+  private:
+    SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
+                                   /// ranges.
+
+  public:
+    const unsigned reg;  // the register or stack slot of this interval.
+    float weight;        // weight of this interval
+
+    LiveInterval(unsigned Reg, float Weight) : reg(Reg), weight(Weight) {}
+
+    ~LiveInterval() {
+      clearSubRanges();
+    }
+
+    template<typename T>
+    class SingleLinkedListIterator {
+      T *P;
+
+    public:
+      SingleLinkedListIterator<T>(T *P) : P(P) {}
+
+      SingleLinkedListIterator<T> &operator++() {
+        P = P->Next;
+        return *this;
+      }
+      SingleLinkedListIterator<T> operator++(int) {
+        SingleLinkedListIterator res = *this;
+        ++*this;
+        return res;
+      }
+      bool operator!=(const SingleLinkedListIterator<T> &Other) {
+        return P != Other.operator->();
+      }
+      bool operator==(const SingleLinkedListIterator<T> &Other) {
+        return P == Other.operator->();
+      }
+      T &operator*() const {
+        return *P;
+      }
+      T *operator->() const {
+        return P;
+      }
+    };
+
+    using subrange_iterator = SingleLinkedListIterator<SubRange>;
+    using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
+
+    subrange_iterator subrange_begin() {
+      return subrange_iterator(SubRanges);
+    }
+    subrange_iterator subrange_end() {
+      return subrange_iterator(nullptr);
+    }
+
+    const_subrange_iterator subrange_begin() const {
+      return const_subrange_iterator(SubRanges);
+    }
+    const_subrange_iterator subrange_end() const {
+      return const_subrange_iterator(nullptr);
+    }
+
+    iterator_range<subrange_iterator> subranges() {
+      return make_range(subrange_begin(), subrange_end());
+    }
+
+    iterator_range<const_subrange_iterator> subranges() const {
+      return make_range(subrange_begin(), subrange_end());
+    }
+
+    /// Creates a new empty subregister live range. The range is added at the
+    /// beginning of the subrange list; subrange iterators stay valid.
+    SubRange *createSubRange(BumpPtrAllocator &Allocator,
+                             LaneBitmask LaneMask) {
+      SubRange *Range = new (Allocator) SubRange(LaneMask);
+      appendSubRange(Range);
+      return Range;
+    }
+
+    /// Like createSubRange() but the new range is filled with a copy of the
+    /// liveness information in @p CopyFrom.
+    SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
+                                 LaneBitmask LaneMask,
+                                 const LiveRange &CopyFrom) {
+      SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
+      appendSubRange(Range);
+      return Range;
+    }
+
+    /// Returns true if subregister liveness information is available.
+    bool hasSubRanges() const {
+      return SubRanges != nullptr;
+    }
+
+    /// Removes all subregister liveness information.
+    void clearSubRanges();
+
+    /// Removes all subranges without any segments (subranges without segments
+    /// are not considered valid and should only exist temporarily).
+    void removeEmptySubRanges();
+
+    /// getSize - Returns the sum of sizes of all the LiveRange's.
+    ///
+    unsigned getSize() const;
+
+    /// isSpillable - Can this interval be spilled?
+    bool isSpillable() const {
+      return weight != huge_valf;
+    }
+
+    /// markNotSpillable - Mark interval as not spillable
+    void markNotSpillable() {
+      weight = huge_valf;
+    }
+
+    /// For a given lane mask @p LaneMask, compute indexes at which the
+    /// lane is marked undefined by subregister <def,read-undef> definitions.
+    void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
+                               LaneBitmask LaneMask,
+                               const MachineRegisterInfo &MRI,
+                               const SlotIndexes &Indexes) const;
+
+    /// Refines the subranges to support \p LaneMask. This may only be called
+    /// for LI.hasSubrange()==true. Subregister ranges are split or created
+    /// until \p LaneMask can be matched exactly. \p Mod is executed on the
+    /// matching subranges.
+    ///
+    /// Example:
+    ///    Given an interval with subranges with lanemasks L0F00, L00F0 and
+    ///    L000F, refining for mask L0018. Will split the L00F0 lane into
+    ///    L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
+    ///    function will be applied to the L0010 and L0008 subranges.
+    void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
+                         std::function<void(LiveInterval::SubRange&)> Mod);
+
+    bool operator<(const LiveInterval& other) const {
+      const SlotIndex &thisIndex = beginIndex();
+      const SlotIndex &otherIndex = other.beginIndex();
+      return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg);
+    }
+
+    void print(raw_ostream &OS) const;
+    void dump() const;
+
+    /// \brief Walks the interval and assert if any invariants fail to hold.
+    ///
+    /// Note that this is a no-op when asserts are disabled.
+#ifdef NDEBUG
+    void verify(const MachineRegisterInfo *MRI = nullptr) const {}
+#else
+    void verify(const MachineRegisterInfo *MRI = nullptr) const;
+#endif
+
+  private:
+    /// Appends @p Range to SubRanges list.
+    void appendSubRange(SubRange *Range) {
+      Range->Next = SubRanges;
+      SubRanges = Range;
+    }
+
+    /// Free memory held by SubRange.
+    void freeSubRange(SubRange *S);
+  };
+
+  inline raw_ostream &operator<<(raw_ostream &OS,
+                                 const LiveInterval::SubRange &SR) {
+    SR.print(OS);
+    return OS;
+  }
+
+  inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
+    LI.print(OS);
+    return OS;
+  }
+
+  raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
+
+  inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
+    return V < S.start;
+  }
+
+  inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
+    return S.start < V;
+  }
+
+  /// Helper class for performant LiveRange bulk updates.
+  ///
+  /// Calling LiveRange::addSegment() repeatedly can be expensive on large
+  /// live ranges because segments after the insertion point may need to be
+  /// shifted. The LiveRangeUpdater class can defer the shifting when adding
+  /// many segments in order.
+  ///
+  /// The LiveRange will be in an invalid state until flush() is called.
+  class LiveRangeUpdater {
+    LiveRange *LR;
+    SlotIndex LastStart;
+    LiveRange::iterator WriteI;
+    LiveRange::iterator ReadI;
+    SmallVector<LiveRange::Segment, 16> Spills;
+    void mergeSpills();
+
+  public:
+    /// Create a LiveRangeUpdater for adding segments to LR.
+    /// LR will temporarily be in an invalid state until flush() is called.
+    LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
+
+    ~LiveRangeUpdater() { flush(); }
+
+    /// Add a segment to LR and coalesce when possible, just like
+    /// LR.addSegment(). Segments should be added in increasing start order for
+    /// best performance.
+    void add(LiveRange::Segment);
+
+    void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
+      add(LiveRange::Segment(Start, End, VNI));
+    }
+
+    /// Return true if the LR is currently in an invalid state, and flush()
+    /// needs to be called.
+    bool isDirty() const { return LastStart.isValid(); }
+
+    /// Flush the updater state to LR so it is valid and contains all added
+    /// segments.
+    void flush();
+
+    /// Select a different destination live range.
+    void setDest(LiveRange *lr) {
+      if (LR != lr && isDirty())
+        flush();
+      LR = lr;
+    }
+
+    /// Get the current destination live range.
+    LiveRange *getDest() const { return LR; }
+
+    void dump() const;
+    void print(raw_ostream&) const;
+  };
+
+  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
+    X.print(OS);
+    return OS;
+  }
+
+  /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
+  /// LiveInterval into equivalence clases of connected components. A
+  /// LiveInterval that has multiple connected components can be broken into
+  /// multiple LiveIntervals.
+  ///
+  /// Given a LiveInterval that may have multiple connected components, run:
+  ///
+  ///   unsigned numComps = ConEQ.Classify(LI);
+  ///   if (numComps > 1) {
+  ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
+  ///     ConEQ.Distribute(LIS);
+  /// }
+
+  class ConnectedVNInfoEqClasses {
+    LiveIntervals &LIS;
+    IntEqClasses EqClass;
+
+  public:
+    explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
+
+    /// Classify the values in \p LR into connected components.
+    /// Returns the number of connected components.
+    unsigned Classify(const LiveRange &LR);
+
+    /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
+    /// the equivalence class assigned the VNI.
+    unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
+
+    /// Distribute values in \p LI into a separate LiveIntervals
+    /// for each connected component. LIV must have an empty LiveInterval for
+    /// each additional connected component. The first connected component is
+    /// left in \p LI.
+    void Distribute(LiveInterval &LI, LiveInterval *LIV[],
+                    MachineRegisterInfo &MRI);
+  };
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_LIVEINTERVAL_H