Karl Meakin | 5a365d3 | 2024-11-08 23:55:03 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2024 The Hafnium Authors. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style |
| 5 | * license that can be found in the LICENSE file or at |
| 6 | * https://opensource.org/licenses/BSD-3-Clause. |
| 7 | */ |
| 8 | |
| 9 | #include "hf/arch/gicv3.h" |
Karl Meakin | 5a365d3 | 2024-11-08 23:55:03 +0000 | [diff] [blame] | 10 | |
| 11 | #include "hf/api.h" |
| 12 | #include "hf/check.h" |
Karl Meakin | 902af08 | 2024-11-28 14:58:38 +0000 | [diff] [blame] | 13 | #include "hf/ffa.h" |
| 14 | #include "hf/ffa/interrupts.h" |
Karl Meakin | 5a365d3 | 2024-11-08 23:55:03 +0000 | [diff] [blame] | 15 | #include "hf/plat/interrupts.h" |
| 16 | #include "hf/vm.h" |
| 17 | |
| 18 | void plat_ffa_vcpu_allow_interrupts(struct vcpu *current); |
| 19 | bool sp_boot_next(struct vcpu_locked current_locked, struct vcpu **next); |
| 20 | |
Karl Meakin | 117c808 | 2024-12-04 16:03:28 +0000 | [diff] [blame] | 21 | bool ffa_cpu_cycles_run_forward(ffa_id_t vm_id, ffa_vcpu_index_t vcpu_idx, |
| 22 | struct ffa_value *ret) |
Karl Meakin | 5a365d3 | 2024-11-08 23:55:03 +0000 | [diff] [blame] | 23 | { |
| 24 | (void)vm_id; |
| 25 | (void)vcpu_idx; |
| 26 | (void)ret; |
| 27 | |
| 28 | return false; |
| 29 | } |
| 30 | |
| 31 | /** |
| 32 | * Check if current VM can resume target VM using FFA_RUN ABI. |
| 33 | */ |
Karl Meakin | 117c808 | 2024-12-04 16:03:28 +0000 | [diff] [blame] | 34 | bool ffa_cpu_cycles_run_checks(struct vcpu_locked current_locked, |
| 35 | ffa_id_t target_vm_id, ffa_vcpu_index_t vcpu_idx, |
| 36 | struct ffa_value *run_ret, struct vcpu **next) |
Karl Meakin | 5a365d3 | 2024-11-08 23:55:03 +0000 | [diff] [blame] | 37 | { |
| 38 | /* |
| 39 | * Under the Partition runtime model specified in FF-A v1.1-Beta0 spec, |
| 40 | * SP can invoke FFA_RUN to resume target SP. |
| 41 | */ |
| 42 | struct vcpu *target_vcpu; |
| 43 | struct vcpu *current = current_locked.vcpu; |
| 44 | bool ret = true; |
| 45 | struct vm *vm; |
| 46 | struct vcpu_locked target_locked; |
| 47 | struct two_vcpu_locked vcpus_locked; |
| 48 | |
| 49 | vm = vm_find(target_vm_id); |
| 50 | if (vm == NULL) { |
| 51 | return false; |
| 52 | } |
| 53 | |
| 54 | if (vm_is_mp(vm) && vm_is_mp(current->vm) && |
| 55 | vcpu_idx != cpu_index(current->cpu)) { |
| 56 | dlog_verbose("vcpu_idx (%d) != pcpu index (%zu)\n", vcpu_idx, |
| 57 | cpu_index(current->cpu)); |
| 58 | return false; |
| 59 | } |
| 60 | |
| 61 | target_vcpu = api_ffa_get_vm_vcpu(vm, current); |
| 62 | |
| 63 | vcpu_unlock(¤t_locked); |
| 64 | |
| 65 | /* Lock both vCPUs at once to avoid deadlock. */ |
| 66 | vcpus_locked = vcpu_lock_both(current, target_vcpu); |
| 67 | current_locked = vcpus_locked.vcpu1; |
| 68 | target_locked = vcpus_locked.vcpu2; |
| 69 | |
| 70 | /* Only the primary VM can turn ON a vCPU that is currently OFF. */ |
| 71 | if (!vm_is_primary(current->vm) && |
| 72 | target_vcpu->state == VCPU_STATE_OFF) { |
| 73 | run_ret->arg2 = FFA_DENIED; |
| 74 | ret = false; |
| 75 | goto out; |
| 76 | } |
| 77 | |
| 78 | /* |
| 79 | * An SPx can resume another SPy only when SPy is in PREEMPTED or |
| 80 | * BLOCKED state. |
| 81 | */ |
| 82 | if (vm_id_is_current_world(current->vm->id) && |
| 83 | vm_id_is_current_world(target_vm_id)) { |
| 84 | /* Target SP must be in preempted or blocked state. */ |
| 85 | if (target_vcpu->state != VCPU_STATE_PREEMPTED && |
| 86 | target_vcpu->state != VCPU_STATE_BLOCKED) { |
| 87 | run_ret->arg2 = FFA_DENIED; |
| 88 | ret = false; |
| 89 | goto out; |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | /* A SP cannot invoke FFA_RUN to resume a normal world VM. */ |
| 94 | if (!vm_id_is_current_world(target_vm_id)) { |
| 95 | run_ret->arg2 = FFA_DENIED; |
| 96 | ret = false; |
| 97 | goto out; |
| 98 | } |
| 99 | |
Karl Meakin | 5a365d3 | 2024-11-08 23:55:03 +0000 | [diff] [blame] | 100 | if (vm_id_is_current_world(current->vm->id)) { |
| 101 | /* |
| 102 | * Refer FF-A v1.1 EAC0 spec section 8.3.2.2.1 |
| 103 | * Signaling an Other S-Int in blocked state |
| 104 | */ |
| 105 | if (current->preempted_vcpu != NULL) { |
| 106 | /* |
| 107 | * After the target SP execution context has handled |
| 108 | * the interrupt, it uses the FFA_RUN ABI to resume |
| 109 | * the request due to which it had entered the blocked |
| 110 | * state earlier. |
| 111 | * Deny the state transition if the SP didnt perform the |
| 112 | * deactivation of the secure virtual interrupt. |
| 113 | */ |
| 114 | if (!vcpu_is_interrupt_queue_empty(current_locked)) { |
| 115 | run_ret->arg2 = FFA_DENIED; |
| 116 | ret = false; |
| 117 | goto out; |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * Refer Figure 8.13 Scenario 1: Implementation choice: |
| 122 | * SPMC left all intermediate SP execution contexts in |
| 123 | * blocked state. Hence, SPMC now bypasses the |
| 124 | * intermediate these execution contexts and resumes the |
| 125 | * SP execution context that was originally preempted. |
| 126 | */ |
| 127 | *next = current->preempted_vcpu; |
| 128 | if (target_vcpu != current->preempted_vcpu) { |
| 129 | dlog_verbose("Skipping intermediate vCPUs\n"); |
| 130 | } |
| 131 | /* |
| 132 | * This flag should not have been set by SPMC when it |
| 133 | * signaled the virtual interrupt to the SP while SP was |
| 134 | * in WAITING or BLOCKED states. Refer the embedded |
| 135 | * comment in vcpu.h file for further description. |
| 136 | */ |
| 137 | assert(!current->requires_deactivate_call); |
| 138 | |
| 139 | /* |
| 140 | * Clear fields corresponding to secure interrupt |
| 141 | * handling. |
| 142 | */ |
| 143 | vcpu_secure_interrupt_complete(current_locked); |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | /* Check if a vCPU of SP is being resumed. */ |
| 148 | if (vm_id_is_current_world(target_vm_id)) { |
| 149 | /* |
| 150 | * A call chain cannot span CPUs. The target vCPU can only be |
| 151 | * resumed by FFA_RUN on present CPU. |
| 152 | */ |
| 153 | if ((target_vcpu->call_chain.prev_node != NULL || |
| 154 | target_vcpu->call_chain.next_node != NULL) && |
| 155 | (target_vcpu->cpu != current->cpu)) { |
| 156 | run_ret->arg2 = FFA_DENIED; |
| 157 | ret = false; |
| 158 | goto out; |
| 159 | } |
| 160 | |
| 161 | if (!vcpu_is_interrupt_queue_empty(target_locked)) { |
| 162 | /* |
| 163 | * Consider the following scenarios: a secure interrupt |
| 164 | * triggered in normal world and is targeted to an SP. |
| 165 | * Scenario A): The target SP's vCPU was preempted by a |
| 166 | * non secure interrupt. |
| 167 | * Scenario B): The target SP's vCPU was in blocked |
| 168 | * state after it yielded CPU cycles to |
| 169 | * normal world using FFA_YIELD. |
| 170 | * In both the scenarios, SPMC would have injected a |
| 171 | * virtual interrupt and set the appropriate flags after |
| 172 | * de-activating the secure physical interrupt. SPMC did |
| 173 | * not resume the target vCPU at that moment. |
| 174 | */ |
| 175 | assert(target_vcpu->state == VCPU_STATE_PREEMPTED || |
| 176 | target_vcpu->state == VCPU_STATE_BLOCKED); |
| 177 | assert(vcpu_interrupt_count_get(target_locked) > 0); |
| 178 | |
| 179 | /* |
| 180 | * This check is to ensure the target SP vCPU could |
| 181 | * only be a part of NWd scheduled call chain. FF-A v1.1 |
| 182 | * spec prohibits an SPMC scheduled call chain to be |
| 183 | * preempted by a non secure interrupt. |
| 184 | */ |
| 185 | CHECK(target_vcpu->scheduling_mode == NWD_MODE); |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | out: |
| 190 | vcpu_unlock(&target_locked); |
| 191 | return ret; |
| 192 | } |
| 193 | |
| 194 | /** |
| 195 | * SPMC scheduled call chain is completely unwound. |
| 196 | */ |
| 197 | static void plat_ffa_exit_spmc_schedule_mode(struct vcpu_locked current_locked) |
| 198 | { |
| 199 | struct vcpu *current; |
| 200 | |
| 201 | current = current_locked.vcpu; |
| 202 | assert(current->call_chain.next_node == NULL); |
| 203 | CHECK(current->scheduling_mode == SPMC_MODE); |
| 204 | |
| 205 | current->scheduling_mode = NONE; |
| 206 | current->rt_model = RTM_NONE; |
| 207 | } |
| 208 | |
| 209 | /** |
| 210 | * A SP in running state could have been pre-empted by a secure interrupt. SPM |
| 211 | * would switch the execution to the vCPU of target SP responsible for interupt |
| 212 | * handling. Upon completion of interrupt handling, vCPU performs interrupt |
| 213 | * signal completion through FFA_MSG_WAIT ABI (provided it was in waiting state |
| 214 | * when interrupt was signaled). |
| 215 | * |
| 216 | * SPM then resumes the original SP that was initially pre-empted. |
| 217 | */ |
| 218 | static struct ffa_value plat_ffa_preempted_vcpu_resume( |
| 219 | struct vcpu_locked current_locked, struct vcpu **next) |
| 220 | { |
| 221 | struct ffa_value ffa_ret = (struct ffa_value){.func = FFA_MSG_WAIT_32}; |
| 222 | struct vcpu *target_vcpu; |
| 223 | struct vcpu *current = current_locked.vcpu; |
| 224 | struct vcpu_locked target_locked; |
| 225 | struct two_vcpu_locked vcpus_locked; |
| 226 | |
| 227 | CHECK(current->preempted_vcpu != NULL); |
| 228 | CHECK(current->preempted_vcpu->state == VCPU_STATE_PREEMPTED); |
| 229 | |
| 230 | target_vcpu = current->preempted_vcpu; |
| 231 | vcpu_unlock(¤t_locked); |
| 232 | |
| 233 | /* Lock both vCPUs at once to avoid deadlock. */ |
| 234 | vcpus_locked = vcpu_lock_both(current, target_vcpu); |
| 235 | current_locked = vcpus_locked.vcpu1; |
| 236 | target_locked = vcpus_locked.vcpu2; |
| 237 | |
| 238 | /* Reset the fields tracking secure interrupt processing. */ |
| 239 | vcpu_secure_interrupt_complete(current_locked); |
| 240 | |
| 241 | /* SPMC scheduled call chain is completely unwound. */ |
| 242 | plat_ffa_exit_spmc_schedule_mode(current_locked); |
| 243 | assert(current->call_chain.prev_node == NULL); |
| 244 | |
| 245 | current->state = VCPU_STATE_WAITING; |
| 246 | |
| 247 | vcpu_set_running(target_locked, NULL); |
| 248 | |
| 249 | vcpu_unlock(&target_locked); |
| 250 | |
| 251 | /* Restore interrupt priority mask. */ |
| 252 | plat_ffa_vcpu_allow_interrupts(current); |
| 253 | |
| 254 | /* The pre-empted vCPU should be run. */ |
| 255 | *next = target_vcpu; |
| 256 | |
| 257 | return ffa_ret; |
| 258 | } |
| 259 | |
| 260 | static struct ffa_value ffa_msg_wait_complete(struct vcpu_locked current_locked, |
| 261 | struct vcpu **next) |
| 262 | { |
| 263 | struct vcpu *current = current_locked.vcpu; |
| 264 | |
| 265 | current->scheduling_mode = NONE; |
| 266 | current->rt_model = RTM_NONE; |
| 267 | |
| 268 | /* Relinquish control back to the NWd. */ |
| 269 | *next = api_switch_to_other_world( |
| 270 | current_locked, (struct ffa_value){.func = FFA_MSG_WAIT_32}, |
| 271 | VCPU_STATE_WAITING); |
| 272 | |
| 273 | return api_ffa_interrupt_return(0); |
| 274 | } |
| 275 | |
| 276 | /** |
| 277 | * Deals with the common case of intercepting an FFA_MSG_WAIT call. |
| 278 | */ |
| 279 | static bool plat_ffa_msg_wait_intercept(struct vcpu_locked current_locked, |
| 280 | struct vcpu **next, |
| 281 | struct ffa_value *ffa_ret) |
| 282 | { |
| 283 | struct two_vcpu_locked both_vcpu_locks; |
| 284 | struct vcpu *current = current_locked.vcpu; |
| 285 | bool ret = false; |
| 286 | |
| 287 | assert(next != NULL); |
| 288 | assert(*next != NULL); |
| 289 | |
| 290 | vcpu_unlock(¤t_locked); |
| 291 | |
| 292 | both_vcpu_locks = vcpu_lock_both(current, *next); |
| 293 | |
| 294 | /* |
| 295 | * Check if there are any pending secure virtual interrupts to |
| 296 | * be handled. The `next` should have a pointer to the current |
| 297 | * vCPU. Intercept call will set `ret` to FFA_INTERRUPT and the |
| 298 | * respective interrupt id. |
| 299 | */ |
Karl Meakin | 117c808 | 2024-12-04 16:03:28 +0000 | [diff] [blame] | 300 | if (ffa_interrupts_intercept_call(both_vcpu_locks.vcpu1, |
| 301 | both_vcpu_locks.vcpu2, ffa_ret)) { |
Karl Meakin | 5a365d3 | 2024-11-08 23:55:03 +0000 | [diff] [blame] | 302 | *next = NULL; |
| 303 | ret = true; |
| 304 | } |
| 305 | |
| 306 | vcpu_unlock(&both_vcpu_locks.vcpu2); |
| 307 | |
| 308 | return ret; |
| 309 | } |
| 310 | |
| 311 | /** |
| 312 | * The invocation of FFA_MSG_WAIT at secure virtual FF-A instance is compliant |
| 313 | * with FF-A v1.1 EAC0 specification. It only performs the state transition |
| 314 | * from RUNNING to WAITING for the following Partition runtime models: |
| 315 | * RTM_FFA_RUN, RTM_SEC_INTERRUPT, RTM_SP_INIT. |
| 316 | */ |
Karl Meakin | 117c808 | 2024-12-04 16:03:28 +0000 | [diff] [blame] | 317 | struct ffa_value ffa_cpu_cycles_msg_wait_prepare( |
| 318 | struct vcpu_locked current_locked, struct vcpu **next) |
Karl Meakin | 5a365d3 | 2024-11-08 23:55:03 +0000 | [diff] [blame] | 319 | { |
| 320 | struct ffa_value ret = api_ffa_interrupt_return(0); |
| 321 | struct vcpu *current = current_locked.vcpu; |
| 322 | |
| 323 | switch (current->rt_model) { |
| 324 | case RTM_SP_INIT: |
| 325 | if (!sp_boot_next(current_locked, next)) { |
| 326 | ret = ffa_msg_wait_complete(current_locked, next); |
| 327 | |
| 328 | if (plat_ffa_msg_wait_intercept(current_locked, next, |
| 329 | &ret)) { |
| 330 | } |
| 331 | } |
| 332 | break; |
| 333 | case RTM_SEC_INTERRUPT: |
| 334 | /* |
| 335 | * Either resume the preempted SP or complete the FFA_MSG_WAIT. |
| 336 | */ |
| 337 | assert(current->preempted_vcpu != NULL); |
| 338 | plat_ffa_preempted_vcpu_resume(current_locked, next); |
| 339 | |
| 340 | if (plat_ffa_msg_wait_intercept(current_locked, next, &ret)) { |
| 341 | break; |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * If CPU cycles were allocated through FFA_RUN interface, |
| 346 | * allow the interrupts(if they were masked earlier) before |
| 347 | * returning control to NWd. |
| 348 | */ |
| 349 | plat_ffa_vcpu_allow_interrupts(current); |
| 350 | break; |
| 351 | case RTM_FFA_RUN: |
| 352 | ret = ffa_msg_wait_complete(current_locked, next); |
| 353 | |
| 354 | if (plat_ffa_msg_wait_intercept(current_locked, next, &ret)) { |
| 355 | break; |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * If CPU cycles were allocated through FFA_RUN interface, |
| 360 | * allow the interrupts(if they were masked earlier) before |
| 361 | * returning control to NWd. |
| 362 | */ |
| 363 | plat_ffa_vcpu_allow_interrupts(current); |
| 364 | |
| 365 | break; |
| 366 | default: |
| 367 | panic("%s: unexpected runtime model %x for [%x %x]", |
| 368 | current->rt_model, current->vm->id, |
| 369 | cpu_index(current->cpu)); |
| 370 | } |
| 371 | |
| 372 | vcpu_unlock(¤t_locked); |
| 373 | |
| 374 | return ret; |
| 375 | } |
| 376 | |
| 377 | /** |
| 378 | * Enforce action of an SP in response to non-secure or other-secure interrupt |
| 379 | * by changing the priority mask. Effectively, physical interrupts shall not |
| 380 | * trigger which has the same effect as queueing interrupts. |
| 381 | */ |
| 382 | static void plat_ffa_vcpu_queue_interrupts( |
| 383 | struct vcpu_locked receiver_vcpu_locked) |
| 384 | { |
| 385 | struct vcpu *receiver_vcpu = receiver_vcpu_locked.vcpu; |
| 386 | uint8_t current_priority; |
| 387 | |
| 388 | /* Save current value of priority mask. */ |
| 389 | current_priority = plat_interrupts_get_priority_mask(); |
| 390 | receiver_vcpu->prev_interrupt_priority = current_priority; |
| 391 | |
| 392 | if (receiver_vcpu->vm->other_s_interrupts_action == |
| 393 | OTHER_S_INT_ACTION_QUEUED || |
| 394 | receiver_vcpu->scheduling_mode == SPMC_MODE) { |
| 395 | /* |
| 396 | * If secure interrupts not masked yet, mask them now. We could |
| 397 | * enter SPMC scheduled mode when an EL3 SPMD Logical partition |
| 398 | * sends a direct request, and we are making the IMPDEF choice |
| 399 | * to mask interrupts when such a situation occurs. This keeps |
| 400 | * design simple. |
| 401 | */ |
| 402 | if (current_priority > SWD_MASK_ALL_INT) { |
| 403 | plat_interrupts_set_priority_mask(SWD_MASK_ALL_INT); |
| 404 | } |
| 405 | } else if (receiver_vcpu->vm->ns_interrupts_action == |
| 406 | NS_ACTION_QUEUED) { |
| 407 | /* If non secure interrupts not masked yet, mask them now. */ |
| 408 | if (current_priority > SWD_MASK_NS_INT) { |
| 409 | plat_interrupts_set_priority_mask(SWD_MASK_NS_INT); |
| 410 | } |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | /* |
| 415 | * Initialize the scheduling mode and/or Partition Runtime model of the target |
| 416 | * SP upon being resumed by an FFA_RUN ABI. |
| 417 | */ |
Karl Meakin | 117c808 | 2024-12-04 16:03:28 +0000 | [diff] [blame] | 418 | void ffa_cpu_cycles_init_schedule_mode_ffa_runeld_prepare( |
| 419 | struct vcpu_locked current_locked, struct vcpu_locked target_locked) |
Karl Meakin | 5a365d3 | 2024-11-08 23:55:03 +0000 | [diff] [blame] | 420 | { |
| 421 | struct vcpu *vcpu = target_locked.vcpu; |
| 422 | struct vcpu *current = current_locked.vcpu; |
| 423 | |
| 424 | /* |
| 425 | * Scenario 1 in Table 8.4; Therefore SPMC could be resuming a vCPU |
| 426 | * that was part of NWd scheduled mode. |
| 427 | */ |
| 428 | CHECK(vcpu->scheduling_mode != SPMC_MODE); |
| 429 | |
| 430 | /* Section 8.2.3 bullet 4.2 of spec FF-A v1.1 EAC0. */ |
| 431 | if (vcpu->state == VCPU_STATE_WAITING) { |
| 432 | assert(vcpu->rt_model == RTM_SP_INIT || |
| 433 | vcpu->rt_model == RTM_NONE); |
| 434 | vcpu->rt_model = RTM_FFA_RUN; |
| 435 | |
| 436 | if (!vm_id_is_current_world(current->vm->id) || |
| 437 | (current->scheduling_mode == NWD_MODE)) { |
| 438 | vcpu->scheduling_mode = NWD_MODE; |
| 439 | } |
| 440 | } else { |
| 441 | /* SP vCPU would have been pre-empted earlier or blocked. */ |
| 442 | CHECK(vcpu->state == VCPU_STATE_PREEMPTED || |
| 443 | vcpu->state == VCPU_STATE_BLOCKED); |
| 444 | } |
| 445 | |
| 446 | plat_ffa_vcpu_queue_interrupts(target_locked); |
| 447 | } |
| 448 | |
| 449 | /* |
| 450 | * Prepare to yield execution back to the VM/SP that allocated CPU cycles and |
| 451 | * move to BLOCKED state. If the CPU cycles were allocated to the current |
| 452 | * execution context by the SPMC to handle secure virtual interrupt, then |
| 453 | * FFA_YIELD invocation is essentially a no-op. |
| 454 | */ |
Karl Meakin | 117c808 | 2024-12-04 16:03:28 +0000 | [diff] [blame] | 455 | struct ffa_value ffa_cpu_cycles_yield_prepare(struct vcpu_locked current_locked, |
| 456 | struct vcpu **next, |
| 457 | uint32_t timeout_low, |
| 458 | uint32_t timeout_high) |
Karl Meakin | 5a365d3 | 2024-11-08 23:55:03 +0000 | [diff] [blame] | 459 | { |
| 460 | struct ffa_value ret_args = (struct ffa_value){.func = FFA_SUCCESS_32}; |
| 461 | struct vcpu *current = current_locked.vcpu; |
| 462 | struct ffa_value ret = { |
| 463 | .func = FFA_YIELD_32, |
| 464 | .arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)), |
| 465 | .arg2 = timeout_low, |
| 466 | .arg3 = timeout_high, |
| 467 | }; |
| 468 | |
| 469 | switch (current->rt_model) { |
| 470 | case RTM_FFA_DIR_REQ: |
| 471 | assert(current->direct_request_origin.vm_id != |
| 472 | HF_INVALID_VM_ID); |
| 473 | if (current->call_chain.prev_node == NULL) { |
| 474 | /* |
| 475 | * Relinquish cycles to the NWd VM that sent direct |
| 476 | * request message to the current SP. |
| 477 | */ |
| 478 | *next = api_switch_to_other_world(current_locked, ret, |
| 479 | VCPU_STATE_BLOCKED); |
| 480 | } else { |
| 481 | /* |
| 482 | * Relinquish cycles to the SP that sent direct request |
| 483 | * message to the current SP. |
| 484 | */ |
| 485 | *next = api_switch_to_vm( |
| 486 | current_locked, ret, VCPU_STATE_BLOCKED, |
| 487 | current->direct_request_origin.vm_id); |
| 488 | } |
| 489 | break; |
| 490 | case RTM_SEC_INTERRUPT: { |
| 491 | /* |
| 492 | * SPMC does not implement a scheduler needed to resume the |
| 493 | * current vCPU upon timeout expiration. Hence, SPMC makes the |
| 494 | * implementation defined choice to treat FFA_YIELD invocation |
| 495 | * as a no-op if the SP execution context is in the secure |
| 496 | * interrupt runtime model. This does not violate FF-A spec as |
| 497 | * the spec does not mandate timeout to be honored. Moreover, |
| 498 | * timeout specified by an endpoint is just a hint to the |
| 499 | * partition manager which allocated CPU cycles. |
| 500 | * Resume the current vCPU. |
| 501 | */ |
| 502 | *next = NULL; |
| 503 | break; |
| 504 | } |
| 505 | default: |
| 506 | CHECK(current->rt_model == RTM_FFA_RUN); |
| 507 | *next = api_switch_to_primary(current_locked, ret, |
| 508 | VCPU_STATE_BLOCKED); |
| 509 | break; |
| 510 | } |
| 511 | |
| 512 | /* |
| 513 | * Before yielding CPU cycles, allow the interrupts(if they were |
| 514 | * masked earlier). |
| 515 | */ |
| 516 | if (*next != NULL) { |
| 517 | plat_ffa_vcpu_allow_interrupts(current); |
| 518 | } |
| 519 | |
| 520 | return ret_args; |
| 521 | } |