| /* |
| * SPDX-License-Identifier: BSD-3-Clause |
| * |
| * SPDX-FileCopyrightText: Copyright TF-RMM Contributors. |
| */ |
| |
| #include <arch.h> |
| #include <arch_features.h> |
| #include <attestation.h> |
| #include <buffer.h> |
| #include <cpuid.h> |
| #include <exit.h> |
| #include <fpu_helpers.h> |
| #include <rec.h> |
| #include <run.h> |
| #include <smc-rmi.h> |
| #include <sve.h> |
| #include <timers.h> |
| |
| static struct ns_state g_ns_data[MAX_CPUS]; |
| static uint8_t g_sve_data[MAX_CPUS][sizeof(struct sve_state)] |
| __attribute__((aligned(sizeof(__uint128_t)))); |
| |
| /* |
| * Initialize the aux data and any buffer pointers to the aux granule memory for |
| * use by REC when it is entered. |
| */ |
| static void init_aux_data(struct rec_aux_data *aux_data, |
| void *rec_aux, |
| unsigned int num_rec_aux) |
| { |
| aux_data->attest_heap_buf = (uint8_t *)rec_aux; |
| |
| /* Ensure we have enough aux granules for use by REC */ |
| assert(num_rec_aux >= REC_HEAP_PAGES); |
| } |
| |
| /* |
| * The parent REC granules lock is expected to be acquired |
| * before functions map_rec_aux() and unmap_rec_aux() are called. |
| */ |
| static void *map_rec_aux(struct granule *rec_aux_pages[], unsigned long num_aux) |
| { |
| void *rec_aux = NULL; |
| |
| for (unsigned long i = 0UL; i < num_aux; i++) { |
| void *aux = granule_map(rec_aux_pages[i], SLOT_REC_AUX0 + i); |
| |
| if (i == 0UL) { |
| rec_aux = aux; |
| } |
| } |
| return rec_aux; |
| } |
| |
| static void unmap_rec_aux(void *rec_aux, unsigned long num_aux) |
| { |
| unsigned char *rec_aux_vaddr = (unsigned char *)rec_aux; |
| |
| for (unsigned long i = 0UL; i < num_aux; i++) { |
| buffer_unmap(rec_aux_vaddr + i * GRANULE_SIZE); |
| } |
| } |
| |
| static void save_sysreg_state(struct sysreg_state *sysregs) |
| { |
| sysregs->sp_el0 = read_sp_el0(); |
| sysregs->sp_el1 = read_sp_el1(); |
| sysregs->elr_el1 = read_elr_el12(); |
| sysregs->spsr_el1 = read_spsr_el12(); |
| sysregs->pmcr_el0 = read_pmcr_el0(); |
| sysregs->pmuserenr_el0 = read_pmuserenr_el0(); |
| sysregs->tpidrro_el0 = read_tpidrro_el0(); |
| sysregs->tpidr_el0 = read_tpidr_el0(); |
| sysregs->csselr_el1 = read_csselr_el1(); |
| sysregs->sctlr_el1 = read_sctlr_el12(); |
| sysregs->actlr_el1 = read_actlr_el1(); |
| sysregs->cpacr_el1 = read_cpacr_el12(); |
| sysregs->ttbr0_el1 = read_ttbr0_el12(); |
| sysregs->ttbr1_el1 = read_ttbr1_el12(); |
| sysregs->tcr_el1 = read_tcr_el12(); |
| sysregs->esr_el1 = read_esr_el12(); |
| sysregs->afsr0_el1 = read_afsr0_el12(); |
| sysregs->afsr1_el1 = read_afsr1_el12(); |
| sysregs->far_el1 = read_far_el12(); |
| sysregs->mair_el1 = read_mair_el12(); |
| sysregs->vbar_el1 = read_vbar_el12(); |
| |
| sysregs->contextidr_el1 = read_contextidr_el12(); |
| sysregs->tpidr_el1 = read_tpidr_el1(); |
| sysregs->amair_el1 = read_amair_el12(); |
| sysregs->cntkctl_el1 = read_cntkctl_el12(); |
| sysregs->par_el1 = read_par_el1(); |
| sysregs->mdscr_el1 = read_mdscr_el1(); |
| sysregs->mdccint_el1 = read_mdccint_el1(); |
| sysregs->disr_el1 = read_disr_el1(); |
| MPAM(sysregs->mpam0_el1 = read_mpam0_el1();) |
| |
| /* Timer registers */ |
| sysregs->cntpoff_el2 = read_cntpoff_el2(); |
| sysregs->cntvoff_el2 = read_cntvoff_el2(); |
| sysregs->cntp_ctl_el0 = read_cntp_ctl_el02(); |
| sysregs->cntp_cval_el0 = read_cntp_cval_el02(); |
| sysregs->cntv_ctl_el0 = read_cntv_ctl_el02(); |
| sysregs->cntv_cval_el0 = read_cntv_cval_el02(); |
| } |
| |
| static void save_realm_state(struct rec *rec) |
| { |
| save_sysreg_state(&rec->sysregs); |
| |
| rec->pc = read_elr_el2(); |
| rec->pstate = read_spsr_el2(); |
| |
| gic_save_state(&rec->sysregs.gicstate); |
| } |
| |
| static void restore_sysreg_state(struct sysreg_state *sysregs) |
| { |
| write_sp_el0(sysregs->sp_el0); |
| write_sp_el1(sysregs->sp_el1); |
| write_elr_el12(sysregs->elr_el1); |
| write_spsr_el12(sysregs->spsr_el1); |
| write_pmcr_el0(sysregs->pmcr_el0); |
| write_pmuserenr_el0(sysregs->pmuserenr_el0); |
| write_tpidrro_el0(sysregs->tpidrro_el0); |
| write_tpidr_el0(sysregs->tpidr_el0); |
| write_csselr_el1(sysregs->csselr_el1); |
| write_sctlr_el12(sysregs->sctlr_el1); |
| write_actlr_el1(sysregs->actlr_el1); |
| write_cpacr_el12(sysregs->cpacr_el1); |
| write_ttbr0_el12(sysregs->ttbr0_el1); |
| write_ttbr1_el12(sysregs->ttbr1_el1); |
| write_tcr_el12(sysregs->tcr_el1); |
| write_esr_el12(sysregs->esr_el1); |
| write_afsr0_el12(sysregs->afsr0_el1); |
| write_afsr1_el12(sysregs->afsr1_el1); |
| write_far_el12(sysregs->far_el1); |
| write_mair_el12(sysregs->mair_el1); |
| write_vbar_el12(sysregs->vbar_el1); |
| |
| write_contextidr_el12(sysregs->contextidr_el1); |
| write_tpidr_el1(sysregs->tpidr_el1); |
| write_amair_el12(sysregs->amair_el1); |
| write_cntkctl_el12(sysregs->cntkctl_el1); |
| write_par_el1(sysregs->par_el1); |
| write_mdscr_el1(sysregs->mdscr_el1); |
| write_mdccint_el1(sysregs->mdccint_el1); |
| write_disr_el1(sysregs->disr_el1); |
| MPAM(write_mpam0_el1(sysregs->mpam0_el1);) |
| write_vmpidr_el2(sysregs->vmpidr_el2); |
| |
| /* Timer registers */ |
| write_cntpoff_el2(sysregs->cntpoff_el2); |
| write_cntvoff_el2(sysregs->cntvoff_el2); |
| |
| /* |
| * Restore CNTx_CVAL registers before CNTx_CTL to avoid |
| * raising the interrupt signal briefly before lowering |
| * it again due to some expired CVAL left in the timer |
| * register. |
| */ |
| write_cntp_cval_el02(sysregs->cntp_cval_el0); |
| write_cntp_ctl_el02(sysregs->cntp_ctl_el0); |
| write_cntv_cval_el02(sysregs->cntv_cval_el0); |
| write_cntv_ctl_el02(sysregs->cntv_ctl_el0); |
| } |
| |
| static void restore_realm_state(struct rec *rec) |
| { |
| /* |
| * Restore this early to give time to the timer mask to propagate to |
| * the GIC. Issue an ISB to ensure the register write is actually |
| * performed before doing the remaining work. |
| */ |
| write_cnthctl_el2(rec->sysregs.cnthctl_el2); |
| isb(); |
| |
| restore_sysreg_state(&rec->sysregs); |
| write_elr_el2(rec->pc); |
| write_spsr_el2(rec->pstate); |
| write_hcr_el2(rec->sysregs.hcr_el2); |
| |
| gic_restore_state(&rec->sysregs.gicstate); |
| } |
| |
| static void configure_realm_stage2(struct rec *rec) |
| { |
| write_vtcr_el2(rec->common_sysregs.vtcr_el2); |
| write_vttbr_el2(rec->common_sysregs.vttbr_el2); |
| } |
| |
| static void save_ns_state(struct ns_state *ns_state) |
| { |
| save_sysreg_state(&ns_state->sysregs); |
| |
| /* |
| * CNTHCTL_EL2 is saved/restored separately from the main system |
| * registers, because the Realm configuration is written on every |
| * entry to the Realm, see `check_pending_timers`. |
| */ |
| ns_state->sysregs.cnthctl_el2 = read_cnthctl_el2(); |
| |
| ns_state->icc_sre_el2 = read_icc_sre_el2(); |
| } |
| |
| static void restore_ns_state(struct ns_state *ns_state) |
| { |
| restore_sysreg_state(&ns_state->sysregs); |
| |
| /* |
| * CNTHCTL_EL2 is saved/restored separately from the main system |
| * registers, because the Realm configuration is written on every |
| * entry to the Realm, see `check_pending_timers`. |
| */ |
| write_cnthctl_el2(ns_state->sysregs.cnthctl_el2); |
| |
| write_icc_sre_el2(ns_state->icc_sre_el2); |
| } |
| |
| static void activate_events(struct rec *rec) |
| { |
| /* |
| * The only event that may be activated at the Realm is the SError. |
| */ |
| if (rec->serror_info.inject) { |
| write_vsesr_el2(rec->serror_info.vsesr_el2); |
| write_hcr_el2(rec->sysregs.hcr_el2 | HCR_VSE); |
| rec->serror_info.inject = false; |
| } |
| } |
| |
| void inject_serror(struct rec *rec, unsigned long vsesr) |
| { |
| rec->serror_info.vsesr_el2 = vsesr; |
| rec->serror_info.inject = true; |
| } |
| |
| void rec_run_loop(struct rec *rec, struct rmi_rec_exit *rec_exit) |
| { |
| struct ns_state *ns_state; |
| int realm_exception_code; |
| void *rec_aux; |
| unsigned int cpuid = my_cpuid(); |
| |
| assert(rec->ns == NULL); |
| |
| assert(cpuid < MAX_CPUS); |
| ns_state = &g_ns_data[cpuid]; |
| |
| /* ensure SVE/FPU context is cleared */ |
| assert(ns_state->sve == NULL); |
| assert(ns_state->fpu == NULL); |
| |
| /* Map auxiliary granules */ |
| rec_aux = map_rec_aux(rec->g_aux, rec->num_rec_aux); |
| |
| init_aux_data(&(rec->aux_data), rec_aux, rec->num_rec_aux); |
| |
| /* |
| * The attset heap on the REC aux pages is mapped now. It is time to |
| * associate it with the current CPU. |
| * This heap will be used for attestation RSI calls when the |
| * REC is running. |
| */ |
| attestation_heap_ctx_assign_pe(&rec->alloc_info.ctx); |
| |
| /* |
| * Initialise the heap for attestation if necessary. |
| */ |
| if (!rec->alloc_info.ctx_initialised) { |
| (void)attestation_heap_ctx_init(rec->aux_data.attest_heap_buf, |
| REC_HEAP_PAGES * SZ_4K); |
| rec->alloc_info.ctx_initialised = true; |
| } |
| |
| if (is_feat_sve_present()) { |
| ns_state->sve = (struct sve_state *)&g_sve_data[cpuid]; |
| } else { |
| ns_state->fpu = (struct fpu_state *)&g_sve_data[cpuid]; |
| } |
| |
| save_ns_state(ns_state); |
| restore_realm_state(rec); |
| |
| /* Prepare for lazy save/restore of FPU/SIMD registers. */ |
| rec->ns = ns_state; |
| assert(rec->fpu_ctx.used == false); |
| |
| configure_realm_stage2(rec); |
| |
| do { |
| /* |
| * We must check the status of the arch timers in every |
| * iteration of the loop to ensure we update the timer |
| * mask on each entry to the realm and that we report any |
| * change in output level to the NS caller. |
| */ |
| if (check_pending_timers(rec)) { |
| rec_exit->exit_reason = RMI_EXIT_IRQ; |
| break; |
| } |
| |
| activate_events(rec); |
| realm_exception_code = run_realm(&rec->regs[0]); |
| } while (handle_realm_exit(rec, rec_exit, realm_exception_code)); |
| |
| /* |
| * Check if FPU/SIMD was used, and if it was, save the realm state, |
| * restore the NS state, and reenable traps in CPTR_EL2. |
| */ |
| if (rec->fpu_ctx.used) { |
| unsigned long cptr; |
| |
| cptr = read_cptr_el2(); |
| cptr &= ~(CPTR_EL2_ZEN_MASK << CPTR_EL2_ZEN_SHIFT); |
| cptr |= (CPTR_EL2_ZEN_NO_TRAP_11 << CPTR_EL2_ZEN_SHIFT); |
| write_cptr_el2(cptr); |
| |
| fpu_save_state(&rec->fpu_ctx.fpu); |
| if (ns_state->sve != NULL) { |
| restore_sve_state(ns_state->sve); |
| } else { |
| assert(ns_state->fpu != NULL); |
| fpu_restore_state(ns_state->fpu); |
| } |
| |
| cptr = read_cptr_el2(); |
| cptr &= ~(CPTR_EL2_FPEN_MASK << CPTR_EL2_FPEN_SHIFT); |
| cptr |= (CPTR_EL2_FPEN_TRAP_ALL_00 << CPTR_EL2_FPEN_SHIFT); |
| cptr &= ~(CPTR_EL2_ZEN_MASK << CPTR_EL2_ZEN_SHIFT); |
| cptr |= (CPTR_EL2_ZEN_TRAP_ALL_00 << CPTR_EL2_ZEN_SHIFT); |
| write_cptr_el2(cptr); |
| rec->fpu_ctx.used = false; |
| } |
| |
| /* |
| * Clear FPU/SVE context while exiting |
| */ |
| ns_state->sve = NULL; |
| ns_state->fpu = NULL; |
| |
| /* |
| * Clear NS pointer since that struct is local to this function. |
| */ |
| rec->ns = NULL; |
| |
| report_timer_state_to_ns(rec_exit); |
| |
| save_realm_state(rec); |
| restore_ns_state(ns_state); |
| |
| /* Undo the heap association */ |
| attestation_heap_ctx_unassign_pe(&rec->alloc_info.ctx); |
| /* Unmap auxiliary granules */ |
| unmap_rec_aux(rec_aux, rec->num_rec_aux); |
| } |