blob: d0526f19c8776b5e67c60b6dade9771d11163c88 [file] [log] [blame]
Mate Toth-Pal31a2d962018-03-09 13:14:44 +01001/**************************************************************************//**
2 * @file cmsis_gcc.h
3 * @brief CMSIS compiler GCC header file
4 * @version V5.0.2
5 * @date 13. February 2017
6 ******************************************************************************/
7/*
8 * Copyright (c) 2009-2017 ARM Limited. All rights reserved.
9 *
10 * SPDX-License-Identifier: Apache-2.0
11 *
12 * Licensed under the Apache License, Version 2.0 (the License); you may
13 * not use this file except in compliance with the License.
14 * You may obtain a copy of the License at
15 *
16 * www.apache.org/licenses/LICENSE-2.0
17 *
18 * Unless required by applicable law or agreed to in writing, software
19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 * See the License for the specific language governing permissions and
22 * limitations under the License.
23 */
24
25#ifndef __CMSIS_GCC_H
26#define __CMSIS_GCC_H
27
28/* ignore some GCC warnings */
29#pragma GCC diagnostic push
30#pragma GCC diagnostic ignored "-Wsign-conversion"
31#pragma GCC diagnostic ignored "-Wconversion"
32#pragma GCC diagnostic ignored "-Wunused-parameter"
33
34/* Fallback for __has_builtin */
35#ifndef __has_builtin
36 #define __has_builtin(x) (0)
37#endif
38
39/* CMSIS compiler specific defines */
40#ifndef __ASM
41 #define __ASM __asm
42#endif
43#ifndef __INLINE
44 #define __INLINE inline
45#endif
46#ifndef __STATIC_INLINE
47 #define __STATIC_INLINE static inline
48#endif
49#ifndef __STATIC_FORCEINLINE
50 #define __STATIC_FORCEINLINE __attribute__((always_inline)) static inline
51#endif
52#ifndef __NO_RETURN
53 #define __NO_RETURN __attribute__((noreturn))
54#endif
55#ifndef __USED
56 #define __USED __attribute__((used))
57#endif
58#ifndef __WEAK
59 #define __WEAK __attribute__((weak))
60#endif
61#ifndef __PACKED
62 #define __PACKED __attribute__((packed, aligned(1)))
63#endif
64#ifndef __PACKED_STRUCT
65 #define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
66#endif
67#ifndef __PACKED_UNION
68 #define __PACKED_UNION union __attribute__((packed, aligned(1)))
69#endif
70#ifndef __UNALIGNED_UINT32 /* deprecated */
71 #pragma GCC diagnostic push
72 #pragma GCC diagnostic ignored "-Wpacked"
73 #pragma GCC diagnostic ignored "-Wattributes"
74 struct __attribute__((packed)) T_UINT32 { uint32_t v; };
75 #pragma GCC diagnostic pop
76 #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
77#endif
78#ifndef __UNALIGNED_UINT16_WRITE
79 #pragma GCC diagnostic push
80 #pragma GCC diagnostic ignored "-Wpacked"
81 #pragma GCC diagnostic ignored "-Wattributes"
82 __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
83 #pragma GCC diagnostic pop
84 #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
85#endif
86#ifndef __UNALIGNED_UINT16_READ
87 #pragma GCC diagnostic push
88 #pragma GCC diagnostic ignored "-Wpacked"
89 #pragma GCC diagnostic ignored "-Wattributes"
90 __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
91 #pragma GCC diagnostic pop
92 #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
93#endif
94#ifndef __UNALIGNED_UINT32_WRITE
95 #pragma GCC diagnostic push
96 #pragma GCC diagnostic ignored "-Wpacked"
97 #pragma GCC diagnostic ignored "-Wattributes"
98 __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
99 #pragma GCC diagnostic pop
100 #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
101#endif
102#ifndef __UNALIGNED_UINT32_READ
103 #pragma GCC diagnostic push
104 #pragma GCC diagnostic ignored "-Wpacked"
105 #pragma GCC diagnostic ignored "-Wattributes"
106 __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
107 #pragma GCC diagnostic pop
108 #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
109#endif
110#ifndef __ALIGNED
111 #define __ALIGNED(x) __attribute__((aligned(x)))
112#endif
113#ifndef __RESTRICT
114 #define __RESTRICT __restrict
115#endif
116
117
118/* ########################### Core Function Access ########################### */
119/** \ingroup CMSIS_Core_FunctionInterface
120 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
121 @{
122 */
123
124/**
125 \brief Enable IRQ Interrupts
126 \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
127 Can only be executed in Privileged modes.
128 */
129__STATIC_FORCEINLINE void __enable_irq(void)
130{
131 __ASM volatile ("cpsie i" : : : "memory");
132}
133
134
135/**
136 \brief Disable IRQ Interrupts
137 \details Disables IRQ interrupts by setting the I-bit in the CPSR.
138 Can only be executed in Privileged modes.
139 */
140__STATIC_FORCEINLINE void __disable_irq(void)
141{
142 __ASM volatile ("cpsid i" : : : "memory");
143}
144
145
146/**
147 \brief Get Control Register
148 \details Returns the content of the Control Register.
149 \return Control Register value
150 */
151__STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
152{
153 uint32_t result;
154
155 __ASM volatile ("MRS %0, control" : "=r" (result) );
156 return(result);
157}
158
159
160#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
161/**
162 \brief Get Control Register (non-secure)
163 \details Returns the content of the non-secure Control Register when in secure mode.
164 \return non-secure Control Register value
165 */
166__STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
167{
168 uint32_t result;
169
170 __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
171 return(result);
172}
173#endif
174
175
176/**
177 \brief Set Control Register
178 \details Writes the given value to the Control Register.
179 \param [in] control Control Register value to set
180 */
181__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
182{
183 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
184}
185
186
187#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
188/**
189 \brief Set Control Register (non-secure)
190 \details Writes the given value to the non-secure Control Register when in secure state.
191 \param [in] control Control Register value to set
192 */
193__STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
194{
195 __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
196}
197#endif
198
199
200/**
201 \brief Get IPSR Register
202 \details Returns the content of the IPSR Register.
203 \return IPSR Register value
204 */
205__STATIC_FORCEINLINE uint32_t __get_IPSR(void)
206{
207 uint32_t result;
208
209 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
210 return(result);
211}
212
213
214/**
215 \brief Get APSR Register
216 \details Returns the content of the APSR Register.
217 \return APSR Register value
218 */
219__STATIC_FORCEINLINE uint32_t __get_APSR(void)
220{
221 uint32_t result;
222
223 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
224 return(result);
225}
226
227
228/**
229 \brief Get xPSR Register
230 \details Returns the content of the xPSR Register.
231 \return xPSR Register value
232 */
233__STATIC_FORCEINLINE uint32_t __get_xPSR(void)
234{
235 uint32_t result;
236
237 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
238 return(result);
239}
240
241
242/**
243 \brief Get Process Stack Pointer
244 \details Returns the current value of the Process Stack Pointer (PSP).
245 \return PSP Register value
246 */
247__STATIC_FORCEINLINE uint32_t __get_PSP(void)
248{
249 register uint32_t result;
250
251 __ASM volatile ("MRS %0, psp" : "=r" (result) );
252 return(result);
253}
254
255
256#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
257/**
258 \brief Get Process Stack Pointer (non-secure)
259 \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
260 \return PSP Register value
261 */
262__STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
263{
264 register uint32_t result;
265
266 __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
267 return(result);
268}
269#endif
270
271
272/**
273 \brief Set Process Stack Pointer
274 \details Assigns the given value to the Process Stack Pointer (PSP).
275 \param [in] topOfProcStack Process Stack Pointer value to set
276 */
277__STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
278{
279 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
280}
281
282
283#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
284/**
285 \brief Set Process Stack Pointer (non-secure)
286 \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
287 \param [in] topOfProcStack Process Stack Pointer value to set
288 */
289__STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
290{
291 __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
292}
293#endif
294
295
296/**
297 \brief Get Main Stack Pointer
298 \details Returns the current value of the Main Stack Pointer (MSP).
299 \return MSP Register value
300 */
301__STATIC_FORCEINLINE uint32_t __get_MSP(void)
302{
303 register uint32_t result;
304
305 __ASM volatile ("MRS %0, msp" : "=r" (result) );
306 return(result);
307}
308
309
310#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
311/**
312 \brief Get Main Stack Pointer (non-secure)
313 \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
314 \return MSP Register value
315 */
316__STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
317{
318 register uint32_t result;
319
320 __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
321 return(result);
322}
323#endif
324
325
326/**
327 \brief Set Main Stack Pointer
328 \details Assigns the given value to the Main Stack Pointer (MSP).
329 \param [in] topOfMainStack Main Stack Pointer value to set
330 */
331__STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
332{
333 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
334}
335
336
337#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
338/**
339 \brief Set Main Stack Pointer (non-secure)
340 \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
341 \param [in] topOfMainStack Main Stack Pointer value to set
342 */
343__STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
344{
345 __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
346}
347#endif
348
349
350#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
351/**
352 \brief Get Stack Pointer (non-secure)
353 \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
354 \return SP Register value
355 */
356__STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
357{
358 register uint32_t result;
359
360 __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
361 return(result);
362}
363
364
365/**
366 \brief Set Stack Pointer (non-secure)
367 \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
368 \param [in] topOfStack Stack Pointer value to set
369 */
370__STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
371{
372 __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
373}
374#endif
375
376
377/**
378 \brief Get Priority Mask
379 \details Returns the current state of the priority mask bit from the Priority Mask Register.
380 \return Priority Mask value
381 */
382__STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
383{
384 uint32_t result;
385
386 __ASM volatile ("MRS %0, primask" : "=r" (result) :: "memory");
387 return(result);
388}
389
390
391#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
392/**
393 \brief Get Priority Mask (non-secure)
394 \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
395 \return Priority Mask value
396 */
397__STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
398{
399 uint32_t result;
400
401 __ASM volatile ("MRS %0, primask_ns" : "=r" (result) :: "memory");
402 return(result);
403}
404#endif
405
406
407/**
408 \brief Set Priority Mask
409 \details Assigns the given value to the Priority Mask Register.
410 \param [in] priMask Priority Mask
411 */
412__STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
413{
414 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
415}
416
417
418#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
419/**
420 \brief Set Priority Mask (non-secure)
421 \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
422 \param [in] priMask Priority Mask
423 */
424__STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
425{
426 __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
427}
428#endif
429
430
431#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
432 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
433 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
434/**
435 \brief Enable FIQ
436 \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
437 Can only be executed in Privileged modes.
438 */
439__STATIC_FORCEINLINE void __enable_fault_irq(void)
440{
441 __ASM volatile ("cpsie f" : : : "memory");
442}
443
444
445/**
446 \brief Disable FIQ
447 \details Disables FIQ interrupts by setting the F-bit in the CPSR.
448 Can only be executed in Privileged modes.
449 */
450__STATIC_FORCEINLINE void __disable_fault_irq(void)
451{
452 __ASM volatile ("cpsid f" : : : "memory");
453}
454
455
456/**
457 \brief Get Base Priority
458 \details Returns the current value of the Base Priority register.
459 \return Base Priority register value
460 */
461__STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
462{
463 uint32_t result;
464
465 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
466 return(result);
467}
468
469
470#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
471/**
472 \brief Get Base Priority (non-secure)
473 \details Returns the current value of the non-secure Base Priority register when in secure state.
474 \return Base Priority register value
475 */
476__STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
477{
478 uint32_t result;
479
480 __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
481 return(result);
482}
483#endif
484
485
486/**
487 \brief Set Base Priority
488 \details Assigns the given value to the Base Priority register.
489 \param [in] basePri Base Priority value to set
490 */
491__STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
492{
493 __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
494}
495
496
497#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
498/**
499 \brief Set Base Priority (non-secure)
500 \details Assigns the given value to the non-secure Base Priority register when in secure state.
501 \param [in] basePri Base Priority value to set
502 */
503__STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
504{
505 __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
506}
507#endif
508
509
510/**
511 \brief Set Base Priority with condition
512 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
513 or the new value increases the BASEPRI priority level.
514 \param [in] basePri Base Priority value to set
515 */
516__STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
517{
518 __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
519}
520
521
522/**
523 \brief Get Fault Mask
524 \details Returns the current value of the Fault Mask register.
525 \return Fault Mask register value
526 */
527__STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
528{
529 uint32_t result;
530
531 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
532 return(result);
533}
534
535
536#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
537/**
538 \brief Get Fault Mask (non-secure)
539 \details Returns the current value of the non-secure Fault Mask register when in secure state.
540 \return Fault Mask register value
541 */
542__STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
543{
544 uint32_t result;
545
546 __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
547 return(result);
548}
549#endif
550
551
552/**
553 \brief Set Fault Mask
554 \details Assigns the given value to the Fault Mask register.
555 \param [in] faultMask Fault Mask value to set
556 */
557__STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
558{
559 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
560}
561
562
563#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
564/**
565 \brief Set Fault Mask (non-secure)
566 \details Assigns the given value to the non-secure Fault Mask register when in secure state.
567 \param [in] faultMask Fault Mask value to set
568 */
569__STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
570{
571 __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
572}
573#endif
574
575#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
576 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
577 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
578
579
580#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
581 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
582
583/**
584 \brief Get Process Stack Pointer Limit
585 \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
586 \return PSPLIM Register value
587 */
588__STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
589{
590 register uint32_t result;
591
592 __ASM volatile ("MRS %0, psplim" : "=r" (result) );
593 return(result);
594}
595
596
597#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
598 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
599/**
600 \brief Get Process Stack Pointer Limit (non-secure)
601 \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
602 \return PSPLIM Register value
603 */
604__STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
605{
606 register uint32_t result;
607
608 __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
609 return(result);
610}
611#endif
612
613
614/**
615 \brief Set Process Stack Pointer Limit
616 \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
617 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
618 */
619__STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
620{
621 __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
622}
623
624
625#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
626 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
627/**
628 \brief Set Process Stack Pointer (non-secure)
629 \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
630 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
631 */
632__STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
633{
634 __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
635}
636#endif
637
638
639/**
640 \brief Get Main Stack Pointer Limit
641 \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
642 \return MSPLIM Register value
643 */
644__STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
645{
646 register uint32_t result;
647
648 __ASM volatile ("MRS %0, msplim" : "=r" (result) );
649
650 return(result);
651}
652
653
654#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
655 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
656/**
657 \brief Get Main Stack Pointer Limit (non-secure)
658 \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
659 \return MSPLIM Register value
660 */
661__STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
662{
663 register uint32_t result;
664
665 __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
666 return(result);
667}
668#endif
669
670
671/**
672 \brief Set Main Stack Pointer Limit
673 \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
674 \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
675 */
676__STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
677{
678 __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
679}
680
681
682#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
683 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
684/**
685 \brief Set Main Stack Pointer Limit (non-secure)
686 \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
687 \param [in] MainStackPtrLimit Main Stack Pointer value to set
688 */
689__STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
690{
691 __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
692}
693#endif
694
695#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
696 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
697
698
699#if ((defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
700 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
701
702/**
703 \brief Get FPSCR
704 \details Returns the current value of the Floating Point Status/Control register.
705 \return Floating Point Status/Control register value
706 */
707__STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
708{
709#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
710 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
711#if __has_builtin(__builtin_arm_get_fpscr) || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
712 /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
713 return __builtin_arm_get_fpscr();
714#else
715 uint32_t result;
716
717 __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
718 return(result);
719#endif
720#else
721 return(0U);
722#endif
723}
724
725
726/**
727 \brief Set FPSCR
728 \details Assigns the given value to the Floating Point Status/Control register.
729 \param [in] fpscr Floating Point Status/Control value to set
730 */
731__STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
732{
733#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
734 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
735#if __has_builtin(__builtin_arm_set_fpscr) || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
736 /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
737 __builtin_arm_set_fpscr(fpscr);
738#else
739 __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
740#endif
741#else
742 (void)fpscr;
743#endif
744}
745
746#endif /* ((defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
747 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
748
749
750
751/*@} end of CMSIS_Core_RegAccFunctions */
752
753
754/* ########################## Core Instruction Access ######################### */
755/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
756 Access to dedicated instructions
757 @{
758*/
759
760/* Define macros for porting to both thumb1 and thumb2.
761 * For thumb1, use low register (r0-r7), specified by constraint "l"
762 * Otherwise, use general registers, specified by constraint "r" */
763#if defined (__thumb__) && !defined (__thumb2__)
764#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
765#define __CMSIS_GCC_RW_REG(r) "+l" (r)
766#define __CMSIS_GCC_USE_REG(r) "l" (r)
767#else
768#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
769#define __CMSIS_GCC_RW_REG(r) "+r" (r)
770#define __CMSIS_GCC_USE_REG(r) "r" (r)
771#endif
772
773/**
774 \brief No Operation
775 \details No Operation does nothing. This instruction can be used for code alignment purposes.
776 */
777#define __NOP() __ASM volatile ("nop")
778
779/**
780 \brief Wait For Interrupt
781 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
782 */
783#define __WFI() __ASM volatile ("wfi")
784
785
786/**
787 \brief Wait For Event
788 \details Wait For Event is a hint instruction that permits the processor to enter
789 a low-power state until one of a number of events occurs.
790 */
791#define __WFE() __ASM volatile ("wfe")
792
793
794/**
795 \brief Send Event
796 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
797 */
798#define __SEV() __ASM volatile ("sev")
799
800
801/**
802 \brief Instruction Synchronization Barrier
803 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
804 so that all instructions following the ISB are fetched from cache or memory,
805 after the instruction has been completed.
806 */
807__STATIC_FORCEINLINE void __ISB(void)
808{
809 __ASM volatile ("isb 0xF":::"memory");
810}
811
812
813/**
814 \brief Data Synchronization Barrier
815 \details Acts as a special kind of Data Memory Barrier.
816 It completes when all explicit memory accesses before this instruction complete.
817 */
818__STATIC_FORCEINLINE void __DSB(void)
819{
820 __ASM volatile ("dsb 0xF":::"memory");
821}
822
823
824/**
825 \brief Data Memory Barrier
826 \details Ensures the apparent order of the explicit memory operations before
827 and after the instruction, without ensuring their completion.
828 */
829__STATIC_FORCEINLINE void __DMB(void)
830{
831 __ASM volatile ("dmb 0xF":::"memory");
832}
833
834
835/**
836 \brief Reverse byte order (32 bit)
837 \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
838 \param [in] value Value to reverse
839 \return Reversed value
840 */
841__STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
842{
843#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
844 return __builtin_bswap32(value);
845#else
846 uint32_t result;
847
848 __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
849 return result;
850#endif
851}
852
853
854/**
855 \brief Reverse byte order (16 bit)
856 \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
857 \param [in] value Value to reverse
858 \return Reversed value
859 */
860__STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
861{
862 uint32_t result;
863
864 __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
865 return result;
866}
867
868
869/**
870 \brief Reverse byte order (16 bit)
871 \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
872 \param [in] value Value to reverse
873 \return Reversed value
874 */
875__STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
876{
877#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
878 return (int16_t)__builtin_bswap16(value);
879#else
880 int16_t result;
881
882 __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
883 return result;
884#endif
885}
886
887
888/**
889 \brief Rotate Right in unsigned value (32 bit)
890 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
891 \param [in] op1 Value to rotate
892 \param [in] op2 Number of Bits to rotate
893 \return Rotated value
894 */
895__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
896{
897 op2 %= 32U;
898 if (op2 == 0U)
899 {
900 return op1;
901 }
902 return (op1 >> op2) | (op1 << (32U - op2));
903}
904
905
906/**
907 \brief Breakpoint
908 \details Causes the processor to enter Debug state.
909 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
910 \param [in] value is ignored by the processor.
911 If required, a debugger can use it to store additional information about the breakpoint.
912 */
913#define __BKPT(value) __ASM volatile ("bkpt "#value)
914
915
916/**
917 \brief Reverse bit order of value
918 \details Reverses the bit order of the given value.
919 \param [in] value Value to reverse
920 \return Reversed value
921 */
922__STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
923{
924 uint32_t result;
925
926#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
927 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
928 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
929 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
930#else
931 uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
932
933 result = value; /* r will be reversed bits of v; first get LSB of v */
934 for (value >>= 1U; value != 0U; value >>= 1U)
935 {
936 result <<= 1U;
937 result |= value & 1U;
938 s--;
939 }
940 result <<= s; /* shift when v's highest bits are zero */
941#endif
942 return result;
943}
944
945
946/**
947 \brief Count leading zeros
948 \details Counts the number of leading zeros of a data value.
949 \param [in] value Value to count the leading zeros
950 \return number of leading zeros in value
951 */
952#define __CLZ __builtin_clz
953
954
955#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
956 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
957 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
958 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
959/**
960 \brief LDR Exclusive (8 bit)
961 \details Executes a exclusive LDR instruction for 8 bit value.
962 \param [in] ptr Pointer to data
963 \return value of type uint8_t at (*ptr)
964 */
965__STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
966{
967 uint32_t result;
968
969#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
970 __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
971#else
972 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
973 accepted by assembler. So has to use following less efficient pattern.
974 */
975 __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
976#endif
977 return ((uint8_t) result); /* Add explicit type cast here */
978}
979
980
981/**
982 \brief LDR Exclusive (16 bit)
983 \details Executes a exclusive LDR instruction for 16 bit values.
984 \param [in] ptr Pointer to data
985 \return value of type uint16_t at (*ptr)
986 */
987__STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
988{
989 uint32_t result;
990
991#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
992 __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
993#else
994 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
995 accepted by assembler. So has to use following less efficient pattern.
996 */
997 __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
998#endif
999 return ((uint16_t) result); /* Add explicit type cast here */
1000}
1001
1002
1003/**
1004 \brief LDR Exclusive (32 bit)
1005 \details Executes a exclusive LDR instruction for 32 bit values.
1006 \param [in] ptr Pointer to data
1007 \return value of type uint32_t at (*ptr)
1008 */
1009__STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
1010{
1011 uint32_t result;
1012
1013 __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
1014 return(result);
1015}
1016
1017
1018/**
1019 \brief STR Exclusive (8 bit)
1020 \details Executes a exclusive STR instruction for 8 bit values.
1021 \param [in] value Value to store
1022 \param [in] ptr Pointer to location
1023 \return 0 Function succeeded
1024 \return 1 Function failed
1025 */
1026__STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
1027{
1028 uint32_t result;
1029
1030 __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1031 return(result);
1032}
1033
1034
1035/**
1036 \brief STR Exclusive (16 bit)
1037 \details Executes a exclusive STR instruction for 16 bit values.
1038 \param [in] value Value to store
1039 \param [in] ptr Pointer to location
1040 \return 0 Function succeeded
1041 \return 1 Function failed
1042 */
1043__STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
1044{
1045 uint32_t result;
1046
1047 __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1048 return(result);
1049}
1050
1051
1052/**
1053 \brief STR Exclusive (32 bit)
1054 \details Executes a exclusive STR instruction for 32 bit values.
1055 \param [in] value Value to store
1056 \param [in] ptr Pointer to location
1057 \return 0 Function succeeded
1058 \return 1 Function failed
1059 */
1060__STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
1061{
1062 uint32_t result;
1063
1064 __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
1065 return(result);
1066}
1067
1068
1069/**
1070 \brief Remove the exclusive lock
1071 \details Removes the exclusive lock which is created by LDREX.
1072 */
1073__STATIC_FORCEINLINE void __CLREX(void)
1074{
1075 __ASM volatile ("clrex" ::: "memory");
1076}
1077
1078#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1079 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1080 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1081 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
1082
1083
1084#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1085 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1086 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
1087/**
1088 \brief Signed Saturate
1089 \details Saturates a signed value.
1090 \param [in] ARG1 Value to be saturated
1091 \param [in] ARG2 Bit position to saturate to (1..32)
1092 \return Saturated value
1093 */
1094#define __SSAT(ARG1,ARG2) \
1095__extension__ \
1096({ \
1097 int32_t __RES, __ARG1 = (ARG1); \
1098 __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1099 __RES; \
1100 })
1101
1102
1103/**
1104 \brief Unsigned Saturate
1105 \details Saturates an unsigned value.
1106 \param [in] ARG1 Value to be saturated
1107 \param [in] ARG2 Bit position to saturate to (0..31)
1108 \return Saturated value
1109 */
1110#define __USAT(ARG1,ARG2) \
1111 __extension__ \
1112({ \
1113 uint32_t __RES, __ARG1 = (ARG1); \
1114 __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1115 __RES; \
1116 })
1117
1118
1119/**
1120 \brief Rotate Right with Extend (32 bit)
1121 \details Moves each bit of a bitstring right by one bit.
1122 The carry input is shifted in at the left end of the bitstring.
1123 \param [in] value Value to rotate
1124 \return Rotated value
1125 */
1126__STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1127{
1128 uint32_t result;
1129
1130 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1131 return(result);
1132}
1133
1134
1135/**
1136 \brief LDRT Unprivileged (8 bit)
1137 \details Executes a Unprivileged LDRT instruction for 8 bit value.
1138 \param [in] ptr Pointer to data
1139 \return value of type uint8_t at (*ptr)
1140 */
1141__STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1142{
1143 uint32_t result;
1144
1145#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1146 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1147#else
1148 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1149 accepted by assembler. So has to use following less efficient pattern.
1150 */
1151 __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1152#endif
1153 return ((uint8_t) result); /* Add explicit type cast here */
1154}
1155
1156
1157/**
1158 \brief LDRT Unprivileged (16 bit)
1159 \details Executes a Unprivileged LDRT instruction for 16 bit values.
1160 \param [in] ptr Pointer to data
1161 \return value of type uint16_t at (*ptr)
1162 */
1163__STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1164{
1165 uint32_t result;
1166
1167#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1168 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1169#else
1170 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1171 accepted by assembler. So has to use following less efficient pattern.
1172 */
1173 __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1174#endif
1175 return ((uint16_t) result); /* Add explicit type cast here */
1176}
1177
1178
1179/**
1180 \brief LDRT Unprivileged (32 bit)
1181 \details Executes a Unprivileged LDRT instruction for 32 bit values.
1182 \param [in] ptr Pointer to data
1183 \return value of type uint32_t at (*ptr)
1184 */
1185__STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1186{
1187 uint32_t result;
1188
1189 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1190 return(result);
1191}
1192
1193
1194/**
1195 \brief STRT Unprivileged (8 bit)
1196 \details Executes a Unprivileged STRT instruction for 8 bit values.
1197 \param [in] value Value to store
1198 \param [in] ptr Pointer to location
1199 */
1200__STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1201{
1202 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1203}
1204
1205
1206/**
1207 \brief STRT Unprivileged (16 bit)
1208 \details Executes a Unprivileged STRT instruction for 16 bit values.
1209 \param [in] value Value to store
1210 \param [in] ptr Pointer to location
1211 */
1212__STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1213{
1214 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1215}
1216
1217
1218/**
1219 \brief STRT Unprivileged (32 bit)
1220 \details Executes a Unprivileged STRT instruction for 32 bit values.
1221 \param [in] value Value to store
1222 \param [in] ptr Pointer to location
1223 */
1224__STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1225{
1226 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1227}
1228
1229#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1230 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1231 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1232
1233/**
1234 \brief Signed Saturate
1235 \details Saturates a signed value.
1236 \param [in] value Value to be saturated
1237 \param [in] sat Bit position to saturate to (1..32)
1238 \return Saturated value
1239 */
1240__STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1241{
1242 if ((sat >= 1U) && (sat <= 32U))
1243 {
1244 const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1245 const int32_t min = -1 - max ;
1246 if (val > max)
1247 {
1248 return max;
1249 }
1250 else if (val < min)
1251 {
1252 return min;
1253 }
1254 }
1255 return val;
1256}
1257
1258/**
1259 \brief Unsigned Saturate
1260 \details Saturates an unsigned value.
1261 \param [in] value Value to be saturated
1262 \param [in] sat Bit position to saturate to (0..31)
1263 \return Saturated value
1264 */
1265__STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1266{
1267 if (sat <= 31U)
1268 {
1269 const uint32_t max = ((1U << sat) - 1U);
1270 if (val > (int32_t)max)
1271 {
1272 return max;
1273 }
1274 else if (val < 0)
1275 {
1276 return 0U;
1277 }
1278 }
1279 return (uint32_t)val;
1280}
1281
1282#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1283 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1284 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1285
1286
1287#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1288 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
1289/**
1290 \brief Load-Acquire (8 bit)
1291 \details Executes a LDAB instruction for 8 bit value.
1292 \param [in] ptr Pointer to data
1293 \return value of type uint8_t at (*ptr)
1294 */
1295__STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1296{
1297 uint32_t result;
1298
1299 __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1300 return ((uint8_t) result);
1301}
1302
1303
1304/**
1305 \brief Load-Acquire (16 bit)
1306 \details Executes a LDAH instruction for 16 bit values.
1307 \param [in] ptr Pointer to data
1308 \return value of type uint16_t at (*ptr)
1309 */
1310__STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1311{
1312 uint32_t result;
1313
1314 __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1315 return ((uint16_t) result);
1316}
1317
1318
1319/**
1320 \brief Load-Acquire (32 bit)
1321 \details Executes a LDA instruction for 32 bit values.
1322 \param [in] ptr Pointer to data
1323 \return value of type uint32_t at (*ptr)
1324 */
1325__STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1326{
1327 uint32_t result;
1328
1329 __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1330 return(result);
1331}
1332
1333
1334/**
1335 \brief Store-Release (8 bit)
1336 \details Executes a STLB instruction for 8 bit values.
1337 \param [in] value Value to store
1338 \param [in] ptr Pointer to location
1339 */
1340__STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1341{
1342 __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1343}
1344
1345
1346/**
1347 \brief Store-Release (16 bit)
1348 \details Executes a STLH instruction for 16 bit values.
1349 \param [in] value Value to store
1350 \param [in] ptr Pointer to location
1351 */
1352__STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1353{
1354 __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1355}
1356
1357
1358/**
1359 \brief Store-Release (32 bit)
1360 \details Executes a STL instruction for 32 bit values.
1361 \param [in] value Value to store
1362 \param [in] ptr Pointer to location
1363 */
1364__STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1365{
1366 __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1367}
1368
1369
1370/**
1371 \brief Load-Acquire Exclusive (8 bit)
1372 \details Executes a LDAB exclusive instruction for 8 bit value.
1373 \param [in] ptr Pointer to data
1374 \return value of type uint8_t at (*ptr)
1375 */
1376__STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
1377{
1378 uint32_t result;
1379
1380 __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) );
1381 return ((uint8_t) result);
1382}
1383
1384
1385/**
1386 \brief Load-Acquire Exclusive (16 bit)
1387 \details Executes a LDAH exclusive instruction for 16 bit values.
1388 \param [in] ptr Pointer to data
1389 \return value of type uint16_t at (*ptr)
1390 */
1391__STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
1392{
1393 uint32_t result;
1394
1395 __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) );
1396 return ((uint16_t) result);
1397}
1398
1399
1400/**
1401 \brief Load-Acquire Exclusive (32 bit)
1402 \details Executes a LDA exclusive instruction for 32 bit values.
1403 \param [in] ptr Pointer to data
1404 \return value of type uint32_t at (*ptr)
1405 */
1406__STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
1407{
1408 uint32_t result;
1409
1410 __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) );
1411 return(result);
1412}
1413
1414
1415/**
1416 \brief Store-Release Exclusive (8 bit)
1417 \details Executes a STLB exclusive instruction for 8 bit values.
1418 \param [in] value Value to store
1419 \param [in] ptr Pointer to location
1420 \return 0 Function succeeded
1421 \return 1 Function failed
1422 */
1423__STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
1424{
1425 uint32_t result;
1426
1427 __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1428 return(result);
1429}
1430
1431
1432/**
1433 \brief Store-Release Exclusive (16 bit)
1434 \details Executes a STLH exclusive instruction for 16 bit values.
1435 \param [in] value Value to store
1436 \param [in] ptr Pointer to location
1437 \return 0 Function succeeded
1438 \return 1 Function failed
1439 */
1440__STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
1441{
1442 uint32_t result;
1443
1444 __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1445 return(result);
1446}
1447
1448
1449/**
1450 \brief Store-Release Exclusive (32 bit)
1451 \details Executes a STL exclusive instruction for 32 bit values.
1452 \param [in] value Value to store
1453 \param [in] ptr Pointer to location
1454 \return 0 Function succeeded
1455 \return 1 Function failed
1456 */
1457__STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
1458{
1459 uint32_t result;
1460
1461 __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1462 return(result);
1463}
1464
1465#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1466 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
1467
1468/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1469
1470
1471/* ################### Compiler specific Intrinsics ########################### */
1472/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1473 Access to dedicated SIMD instructions
1474 @{
1475*/
1476
1477#if (__ARM_FEATURE_DSP == 1) /* ToDo ARMCLANG: This should be ARCH >= ARMv7-M + SIMD */
1478
1479__STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1480{
1481 uint32_t result;
1482
1483 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1484 return(result);
1485}
1486
1487__STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1488{
1489 uint32_t result;
1490
1491 __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1492 return(result);
1493}
1494
1495__STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1496{
1497 uint32_t result;
1498
1499 __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1500 return(result);
1501}
1502
1503__STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1504{
1505 uint32_t result;
1506
1507 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1508 return(result);
1509}
1510
1511__STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1512{
1513 uint32_t result;
1514
1515 __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1516 return(result);
1517}
1518
1519__STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1520{
1521 uint32_t result;
1522
1523 __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1524 return(result);
1525}
1526
1527
1528__STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1529{
1530 uint32_t result;
1531
1532 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1533 return(result);
1534}
1535
1536__STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1537{
1538 uint32_t result;
1539
1540 __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1541 return(result);
1542}
1543
1544__STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1545{
1546 uint32_t result;
1547
1548 __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1549 return(result);
1550}
1551
1552__STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1553{
1554 uint32_t result;
1555
1556 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1557 return(result);
1558}
1559
1560__STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1561{
1562 uint32_t result;
1563
1564 __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1565 return(result);
1566}
1567
1568__STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1569{
1570 uint32_t result;
1571
1572 __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1573 return(result);
1574}
1575
1576
1577__STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1578{
1579 uint32_t result;
1580
1581 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1582 return(result);
1583}
1584
1585__STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1586{
1587 uint32_t result;
1588
1589 __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1590 return(result);
1591}
1592
1593__STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1594{
1595 uint32_t result;
1596
1597 __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1598 return(result);
1599}
1600
1601__STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1602{
1603 uint32_t result;
1604
1605 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1606 return(result);
1607}
1608
1609__STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1610{
1611 uint32_t result;
1612
1613 __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1614 return(result);
1615}
1616
1617__STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1618{
1619 uint32_t result;
1620
1621 __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1622 return(result);
1623}
1624
1625__STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1626{
1627 uint32_t result;
1628
1629 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1630 return(result);
1631}
1632
1633__STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1634{
1635 uint32_t result;
1636
1637 __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1638 return(result);
1639}
1640
1641__STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1642{
1643 uint32_t result;
1644
1645 __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1646 return(result);
1647}
1648
1649__STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1650{
1651 uint32_t result;
1652
1653 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1654 return(result);
1655}
1656
1657__STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1658{
1659 uint32_t result;
1660
1661 __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1662 return(result);
1663}
1664
1665__STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1666{
1667 uint32_t result;
1668
1669 __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1670 return(result);
1671}
1672
1673__STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1674{
1675 uint32_t result;
1676
1677 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1678 return(result);
1679}
1680
1681__STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1682{
1683 uint32_t result;
1684
1685 __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1686 return(result);
1687}
1688
1689__STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1690{
1691 uint32_t result;
1692
1693 __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1694 return(result);
1695}
1696
1697__STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1698{
1699 uint32_t result;
1700
1701 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1702 return(result);
1703}
1704
1705__STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1706{
1707 uint32_t result;
1708
1709 __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1710 return(result);
1711}
1712
1713__STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1714{
1715 uint32_t result;
1716
1717 __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1718 return(result);
1719}
1720
1721__STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1722{
1723 uint32_t result;
1724
1725 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1726 return(result);
1727}
1728
1729__STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1730{
1731 uint32_t result;
1732
1733 __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1734 return(result);
1735}
1736
1737__STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1738{
1739 uint32_t result;
1740
1741 __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1742 return(result);
1743}
1744
1745__STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1746{
1747 uint32_t result;
1748
1749 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1750 return(result);
1751}
1752
1753__STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1754{
1755 uint32_t result;
1756
1757 __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1758 return(result);
1759}
1760
1761__STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1762{
1763 uint32_t result;
1764
1765 __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1766 return(result);
1767}
1768
1769__STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1770{
1771 uint32_t result;
1772
1773 __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1774 return(result);
1775}
1776
1777__STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1778{
1779 uint32_t result;
1780
1781 __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1782 return(result);
1783}
1784
1785#define __SSAT16(ARG1,ARG2) \
1786({ \
1787 int32_t __RES, __ARG1 = (ARG1); \
1788 __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1789 __RES; \
1790 })
1791
1792#define __USAT16(ARG1,ARG2) \
1793({ \
1794 uint32_t __RES, __ARG1 = (ARG1); \
1795 __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1796 __RES; \
1797 })
1798
1799__STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1800{
1801 uint32_t result;
1802
1803 __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1804 return(result);
1805}
1806
1807__STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1808{
1809 uint32_t result;
1810
1811 __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1812 return(result);
1813}
1814
1815__STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1816{
1817 uint32_t result;
1818
1819 __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1820 return(result);
1821}
1822
1823__STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1824{
1825 uint32_t result;
1826
1827 __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1828 return(result);
1829}
1830
1831__STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
1832{
1833 uint32_t result;
1834
1835 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1836 return(result);
1837}
1838
1839__STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1840{
1841 uint32_t result;
1842
1843 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1844 return(result);
1845}
1846
1847__STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1848{
1849 uint32_t result;
1850
1851 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1852 return(result);
1853}
1854
1855__STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1856{
1857 uint32_t result;
1858
1859 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1860 return(result);
1861}
1862
1863__STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1864{
1865 union llreg_u{
1866 uint32_t w32[2];
1867 uint64_t w64;
1868 } llr;
1869 llr.w64 = acc;
1870
1871#ifndef __ARMEB__ /* Little endian */
1872 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1873#else /* Big endian */
1874 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1875#endif
1876
1877 return(llr.w64);
1878}
1879
1880__STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1881{
1882 union llreg_u{
1883 uint32_t w32[2];
1884 uint64_t w64;
1885 } llr;
1886 llr.w64 = acc;
1887
1888#ifndef __ARMEB__ /* Little endian */
1889 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1890#else /* Big endian */
1891 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1892#endif
1893
1894 return(llr.w64);
1895}
1896
1897__STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
1898{
1899 uint32_t result;
1900
1901 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1902 return(result);
1903}
1904
1905__STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1906{
1907 uint32_t result;
1908
1909 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1910 return(result);
1911}
1912
1913__STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1914{
1915 uint32_t result;
1916
1917 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1918 return(result);
1919}
1920
1921__STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1922{
1923 uint32_t result;
1924
1925 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1926 return(result);
1927}
1928
1929__STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1930{
1931 union llreg_u{
1932 uint32_t w32[2];
1933 uint64_t w64;
1934 } llr;
1935 llr.w64 = acc;
1936
1937#ifndef __ARMEB__ /* Little endian */
1938 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1939#else /* Big endian */
1940 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1941#endif
1942
1943 return(llr.w64);
1944}
1945
1946__STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1947{
1948 union llreg_u{
1949 uint32_t w32[2];
1950 uint64_t w64;
1951 } llr;
1952 llr.w64 = acc;
1953
1954#ifndef __ARMEB__ /* Little endian */
1955 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1956#else /* Big endian */
1957 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1958#endif
1959
1960 return(llr.w64);
1961}
1962
1963__STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
1964{
1965 uint32_t result;
1966
1967 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1968 return(result);
1969}
1970
1971__STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
1972{
1973 int32_t result;
1974
1975 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1976 return(result);
1977}
1978
1979__STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
1980{
1981 int32_t result;
1982
1983 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1984 return(result);
1985}
1986
1987#if 0
1988#define __PKHBT(ARG1,ARG2,ARG3) \
1989({ \
1990 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1991 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1992 __RES; \
1993 })
1994
1995#define __PKHTB(ARG1,ARG2,ARG3) \
1996({ \
1997 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1998 if (ARG3 == 0) \
1999 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
2000 else \
2001 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
2002 __RES; \
2003 })
2004#endif
2005
2006#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
2007 ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
2008
2009#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
2010 ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
2011
2012__STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
2013{
2014 int32_t result;
2015
2016 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
2017 return(result);
2018}
2019
2020#endif /* (__ARM_FEATURE_DSP == 1) */
2021/*@} end of group CMSIS_SIMD_intrinsics */
2022
2023
2024#pragma GCC diagnostic pop
2025
2026#endif /* __CMSIS_GCC_H */