- = Macronix Proprietary
M=I16G
MACRONIX

INTERNATIONAL CO., LTD. APPLICATION NOTE

External Trusted Secure Storage Partition

Rev. 1.0, 2022-04-01

- = Macronix Proprietary
M=I16G

MACRONIX

INTERNATIONAL C0., LD, APPLICATION NOTE
Contents

N [01 o o [¥ ot i [o] D TP ST P PO PPRUPRR 2
2. DESIGN CONCEPE i 3
2.1 OVEIVIEW.....eeiiiee ettt eettee ettt e e ettt e e et e e st e s st e e s ar e e e e e amre e e s samre e e s enreeesenreeeseanneeesennnees 3
2.2 AFCNIEECEUIE ...ttt st sttt e s bt st e st s e b e e beennees 4
2.2. 1 ETSS SEIVICES.cciiiiiiiiiiiiiieieiitte ettt ettt s s sbe e e s ba e s s 4
2.2.2 Secure FIash frameworkc.oo i 5

2.3 COUR SEIUCTUIE ...ttt ettt ettt ettt sttt et e b e sbe e st e b e e bt e sb e e sbeesatesabeeabeenneennees 5
2.3 L INTEITACE weeieetieeiee ettt ettt sttt et sttt e bt e et e st e e eateesbeeenaee s 5
B A =) &3 o Y- 1 o o PP 6

B TR T U L TSP PSPPSR 6

3 Hardware and software environment SELUPueviviiiiiiiiiiie e 6
3.1 HardWare SELUD ..ccuvveeeeciieeeceiteeeeectte e e eette e e e e tte e e e ebteeeseabaseeeesteeeeestseesessaeasaasaneassassenaeanns 7
3.2 SOFtWAIE SELUD coiieiieei ittt et e e et e e e sba e e e sbte e e e sbteeeesabtaeessbeneeesaseaeeennns 7

R =T o oY A=Y o= d=Tol UL o] PP 7
4.1 BUIld @Nd 108iiiiieiieeiee et st sabe e 7
4.2 RUN TEST SUITES ..eeeiiieieeecteee ettt e s e s enneee s 8

oI AV AT o T I 1) o PPN 9

_ Macronix Proprietary

=]

MACRONIX

INTERNATIONAL CO., LD, APPLICATION NOTE

1. Introduction

This document firstly introduces the motivation of adding External Trusted Secure Storage
service(in short, ETSS service), then describes the design proposal and integration guide.
As semiconductor process nodes continue to shrink, the advanced MCUs and SoCs suppliers
are shrinking the embedded non-volatile memory footprint. The capacity of embedded NOR
Flash is not enough to store sophisticated application code and data. Nowdays more and more
application code and data are stored in external memory. Having a secure storage solution is
very important when storage is external to MCU. Macronix and other Flash memory suppliers
have developed several security memory products, and three major products are RPMC,
Authentication Flash, and a more full featured secure Flash like Macronix ArmorFlash.
RPMC is a memory device that its sole purpose is to provide non-volatile monotonic counters
for the host. Authentication Flash only performs authentication with the host before operations.
Compared to previous two security Flash, the full featured secure Flash performs authentication,
encryption along with a full range of additional security features.This secure Flash generally
equips with hardware crypto engine with advanced cryptography algorithms, physically
unclonable function(PUF), non-volatile monotonic counters, TRNG, key storage and
management module, etc.
Secure Flash is always shielded by advanced security functionality, only authorised host is
permitted to perform read, write operations. The communication channel between host
MCU/SoC and secure Flash is protected by encryption, authentication, data scrambling, and
frame sequencing with monotonic counters, as shown in figure 1-1. Besides, the independent
secure sections configured with specific security policy satisfies multi-tenant isolation. Hence
the secure Flash provides dependable defense against unauthorised access, man-in-the-
middle, replay, sniffing and other security threats. s

SoC Secure Flash

@« B £ N

« Encryption
Crypto Crypto « Decryption

Data(Clear) {— e erice Engin E(#} Data(Clear) . Authrgﬁtitatien
Data(Encrypted) « Anti-Tamper

\\ %/ Inte%ritg.r _ % /

Authentication
Figure 1-1 Secure communication channel between host and secure Flash

Trusted Firmware-M(TF-M) is a reference implementation of secure world software for Armv8-
M, Armv8.1-M architectures. Please refer to TF-M website for more information about TF-M.
An External Trusted Secure Storage (ETSS) partition is developed to integrate with native TF-
M project, this ETSS partition mainly provides secure external storage services based on
secure Flash security features. This integration of secure Flash with TF-M framework will
provide an ideal secure external storage solution.

Macronix Proprietary

M=IC

MACRONIX

INTERNATIONAL CO., LTD. APPLICATION NOTE

2. Design concept

2.1 Overview

The ETSS partition is developed as a PSA RoT secure partition, it includes several software
components, which are listed as table 2-1.

Table 2-1 ETSS partition components

Component name Description

NSPE client APl interface | This module exports the client APl of ETSS service to the
NSPE (i.e. to the applications).

SPE client API interface This module exports the client API of ETSS service to the other
services available in TF-M.

Service module This module services the calls from SPE/NSPE client API
interface.

Secure Flash framework This module is the generic framework of secure Flash driver.

module

The interaction between these different components is shown as figure 2-1.

ETS5 Service module

L J

MSPE Client interface
ETSS AP

—> ¥

TF-k SPM Secure Flash
framewark

SPE Client interface
ETSS ARI

F Y

MBS boundary

Figure 2-1 Block diagram of the different components of ETSS partition

:_l Macronix Proprietary

MACRONIX

INTERNATIONAL CO., LTD. APPLICATION NOTE

2.2 Architecture

Figure 2-2 describes the detailed architecture of ETSS services based on secure Flash
framework.

ETSS service

etss_generate_

etss_secure_flash_| |
H randem_number

rovisioning stss_init stss_set stss_get etss_get_info etss_remove etss_get_puf stss_me_get

increment

s e ‘

¥

‘ Filesystermn ‘

etss_ etes] [et
_init | itz | R

|
I 1 Secure Flash framework

Secure Flash APl layer

write_provision it secure_read get_tmy
read_provision o secure_program gel_uid
lack_provisian secure_erase gel_put

get_me
increage_me

Secure Flash common layer

wirite_provision secure_read aet_trng get_me
Teao_piovsion e ereate seasion coture. gogram i Increage me
lock_provision - secure_srase get_put rpmc_update_pmac_key

vendar specifc [ayer

Crypto senvice
vendor1 _specific_impl vendor2_specific_impl vendor3_spesific_impl Jedec_recommend_impl <:::> interface

Figure 2-2 Layered architecture of ETSS partition

2.2.1 ETSS services

ETSS services can be used by other services running in the SPE, or by applications running in
the NSPE. ETSS services are divided into two functional parts: provisioning and deployment.
A provisioning process should be performed to set up binding keys and grant access rights
before deployment.

The etss_secure_flash_provisioning service aims to derive binding keys, application isolation
information and configure secure Flash based on received secure Flash provisioning message.
The protocol of provisioning message may vary with different secure Flash products and
application scenarios. Users should implement appropriate provisioning flow in a secure
environment based on practical device designs.

After provisioning, ETSS is ready for providing deployment services with external secure Flash.
These services are mainly classified into three types: secure storage, replay protection
monotonic counter manipulation, extra security features (such as PUF, true random number
generator, etc.).

The actually available services are based on the security features of backend secure Flash.
Taking following scenarios for example:

- The external security memory product is just an RPMC, then only monotonic counters
manipulation services are available.

- The external security memory product is a full featured secure Flash, it supports security read,
security program, has a certain number of monotonic counters and also has extra security
functions. Then the general ETSS services may be available.

:_l Macronix Proprietary
\l\('k:m\:
INTERNATIONAL CO., LD, APPLICATION NOTE
Currently, ETSS shares the simple filesystem of TF-M ITS, because ETSS is also a PSA RoT

partition, it calls ITS filesystem APIs directly.

As this simple filesystem doesn't involve access rights management, to support secure Flash
multi-zone isolation, the current approach is to declare separate filesystem contexts for each
secure Flash isolated partition. And the layout of each isolated partition is configured in
secureflash_layout.h of each specific secure Flash.

If user needs to support two and more security memory products simultaneously in the ETSS
partition, then corresponding secure Flash instances and filesystem contexts should be
declared.

2.2.2 Secure Flash framework

The secure Flash framework module aims to generalize the application interface of secure
Flash driver, and meanwhile be compatible with different vendors' security memory products. It
can be integrated with different software platforms and OSes. Currently, this framework mainly
consists of four parts: secure Flash API layer, secure Flash common layer, vendor specific layer
and crypto service interface.

Secure Flash API layer: This layer is the interface to upper layer, it mainly manages
application’s access permission based on application identification and pre-provisioned
information. The implementation of this layer varies across software platforms and OSes.
Here integrated with TF-M, this layer manages access permissions based on client id, and
derives corresponding access parameters.

Secure Flash common layer: This layer could be understood as an abstraction layer on top of
more concrete vendor specific operations.

Vendor specific layer: The specific implementation of different secure Flash vendors and
JEDEC recommended implementation, it depends on application's choice to bind with JEDEC
recommended implementation or to bind with vendor specific implementation.

This layer calls tf-m crypto services via crypto service interface to perform cryptographic
operations, then assemble packets sent to external secure Flash and parse packets received
from external secure Flash. For each specific security memory products, the corresponding
secureflash_layout.h should be edited according to application scenarios.

Given that security memory vendors tend to release with hiding some critical source codes,
which means these critical parts maybe released as library files. User should also achieve these
library files and put them in the appropriate locations.

2.3 Code structure

This package consists of three folders:

2.3.1 Interface

This folder holds the interface for NSPE.

- Macronix Proprietary

M=l

MACRONIX

INTERNATIONAL CO., LTD. APPLICATION NOTE

- “include/etss/etss_api.h™ - ETSS API
- Vinclude/etss/etss_defs.h™ - ETSS definitions
- “'src/etss/etss_ipc_api.c - ETSS APl implementation for NSPE

2.3.2 etss_partition

This folder holds the etss partition implementation.

“etss.yaml™ - ETSS partition manifest file

- “etss_secure_api.c’ - ETSS APl implementation for SPE

- “etss_req_mngr.c” - Uniform IPC request handlers

- “external_trusted_secure_storage.h™" - ETSS APl with client_id parameter

- “external_trusted_secure_storage.c™" - ETSS implementation, using the flash_fs as a backend

- “external_secure_flash/*" - Secure Flash filesystem operations

- “secureflash/™" - The backend secure Flash framework for ETSS service

“‘secureflash.c™ - The secure Flash API layer interfaces implementation

“secureflash.h™ - The secure Flash API layer interfaces

“secureflash_common/"" - The secure Flash common layer of secure Flash framework
“crypto_interface/" - The crypto service interface of secure Flash framework
“JEDEC_recommend_impl/*" - The reserved JEDEC recommend uniform implementation
“macronix/"" - Macronix specific implementation

“secureflash_vendor2/"" - The reserved secure Flash vendor2 specific implementation
“secureflash_vendor3/™ - The reserved secure Flash vendor3 specific implementation

- “template/™" - The templates of hardware platform specific implementation

2.3.3 suites

This folder holds the test suites of etss partition.

“suites/etss™

- "non_secure/etss_ns_interface_testsuite.c’" - ETSS non-secure client interface test suite

- “secure/etss_s_interface_testsuite.c’" - ETSS secure client interface test suite

- “secure/etss_s_reliability_testsuite.c™ - ETSS secure interface reliability test suite

3 Hardware and software environment setup

The ETSS partition has been tested with following hardware and software environment.

- Macronix Proprietary

=1

MACRONIX

INTERNATIONAL CO., LTD. APPLICATION NOTE

3.1 Hardware setup

® Macronix MX75 ArmorFlash
® STM32L562E-DK Discovery kit

3.2 Software setup

® Ubuntu
® Python3.6
® gcc-arm-none-eabi-9-2020-g2-update

4 Step-by-step execution

As described before, secure Flash provisioning procedure should be implemented before
testing ETSS deployment services.

A simplified secure Flash provisioning template has been contained in
etss_ns_interface_testsuite.c, user needs to fill the provision_data array with their own
provisioning data blob. User can also replace this secure Flash provisioning template with
their own provisioning implementations.

Besides, user should fulfill their specific implementation of the APIs of plat_secure_flash.h
and Driver_SPI.h.(Assume that the interface between host and secure Flash is SPI
interface, otherwise, the other interface driver should be implemented.)

User can also contact Macronix to get assistance.

4.1 Build and load

The following steps describes how to test ETSS patrtition with existing TF-M framework.
1. Download TF-M v1.4.0 and dependency projects.
2. Download tf-m-extras from https://qgit.trustedfirmware.org/TF-M/ tf-m-extras.qit to local.
3. Put “external_trusted_secure_storage/etss_partition™ and
~ external_trusted_secure_storage/etss_manifest_list.yaml =~ under “tf-m-

extras/partitions™

4. Put external_trusted_secure_storage/interface/include/etss™ under "“trusted-firmware-
m/interface/include™, put ~external_trusted_secure_storage/interface/src/etss™” under
““trusted-firmware-m/interface/src™, put the ““suites/etss™" folder under ““tf-m-
test/test/suites™

5. Add following command line to ““tf-m-test/test/suites/CMakeLists.txt ™.
add_subdirectory(suites/etss)

6. Add following command line to tf-m-test/app/CMakeLists.txt™
S<S<BOOL:S{TFM_PARTITION_EXTERNAL_TRUSTED_SECURE_STORAGE}>:S{INTERFACE_SRC
_DIR}/etss/etss_ipc_api.c>

https://git.trustedfirmware.org/TF-

:_l Macronix Proprietary

MACRONIX

INTERNATIONAL CO., LTD. APPLICATION NOTE

7. Build with the following commands:

cd <TF-M base folder>

mkdir cmake_build

cd cmake_build

cmake .. -DTFM_PLATFORM=<platform>
-DTFM_TOOLCHAIN_FILE=../toolchain_GNUARM.cmake

-DTEST_NS=ON -DTEST_S=OFF -DTFM_PSA_API|=ON
-DTFM_EXTRA_MANIFEST_LIST_FILES=<tf-m-extras-abs-
path>/partitions/external_trusted_secure_storage/etss_manifest_list.yam|
-DTFM_EXTRA_PARTITION_PATHS=<tf-m-extras-abs-
path>/partitions/external_trusted_secure_storage
-DTFM_EXTRA_CONFIG_PATH=<tf-m-extras-abs-
path>/partitions/external_trusted_secure_storage/etss_partition/etss_config.cmake
-DTFM_ISOLATION_LEVEL=2 -G"Unix Makefiles" -

DTFM_PARTITION_EXTERNAL_TRUSTED_SECURE_STORAGE=ON

make install

Note:
<platform>: Such as “stm/stm321562e_dk”, user should modify it to actual hardware
platform.
<TF-M base folder>: The absolute path of trusted-firmware-m folder.
<tf-m-extras-abs-path>: The absolute path of tf-m-extras folder.
8. Sign the tfm_s and tfm_ns images.
9. Load bl2_s image, tfm_s and tfm_ns signed images to run tf-m-tests.

4.2 Run test suites

After completing the above procedure, you should see the following messages in your serial
console.

[INF] Starting bootloader

[INF] Swap type: none

[INF] Swap type: none

[INF] Bootloader chainload address offset: 0x19000
[INF] Jumping to the first image slot

[Sec Thread] Secure image initializing!

TF-M isolation level is: 0x00000002

Booting TFM v1.4.0

Non-Secure system starting...

HiH## Execute test suites for the Non-secure area ####
Running Test Suite external trusted secure storage NS interface tests (TFM_ETSS_TEST_1XXX)...
> Executing 'TFM_ETSS_TEST_1001"
Description: 'Set interface'
TEST: TFM_ETSS_TEST_1001 - PASSED!
> Executing 'TFM_ETSS_TEST_1002'

:_l Macronix Proprietary

MACRONIX
INTERNATIONAL CO., LTD.

APPLICATION NOTE

5 Revision History

Date \ersion Changes
1/4/2022 1.0 First Release.

:_l Macronix Proprietary
MACRONIX
INTERNATIONAL CO., LD, APPLICATION NOTE
Except for customized products which have been expressly identified in the applicable agreement,

Macronix's products are designed, developed, and/or manufactured for ordinary business, industrial,
personal, and/or household applications only, and not for use in any applications which may, directly
or indirectly, cause death, personal injury, or severe property damages. In the event Macronix products
are used in contradicted to their target usage above, the buyer shall take any and all actions to ensure
said Macronix's product qualified for its actual use in accordance with the applicable laws and
regulations; and Macronix as well as its suppliers and/or distributors shall be released from any and

all liability arisen therefrom.

Copyright© Macronix International Co., Ltd. 2022. All rights reserved, including the trademarks and
tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider,
Nbit, Macronix NBit, HybridNVM, HybridFlash, HybridXFlash, XtraROM, KH Logo, BE-SONOS, KSMC,
Kingtech, MXSMIO, Macronix VEE, Macronix MAR, RichBook, Rich TV, OctaRAM, OctaBus, OctaFlash,
and FitCAM. The names and brands of third party referred thereto (if any) are for identification

purposes only.

For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com.

MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.

10

http://www.macronix.com/

