Squashed commit upgrading to mbedtls-3.4.0

Squash merging branch import/mbedtls-3.4.0

8225713449d3 ("libmbedtls: fix unrecognized compiler option")
f03730842d7b ("core: ltc: configure internal MD5")
2b0d0c50127c ("core: ltc: configure internal SHA-1 and SHA-224")
0e48a6e17630 ("libmedtls: core: update to mbedTLS 3.4.0 API")
049882b143af ("libutee: update to mbedTLS 3.4.0 API")
982307bf6169 ("core: LTC mpi_desc.c: update to mbedTLS 3.4.0 API")
33218e9eff7b ("ta: pkcs11: update to mbedTLS 3.4.0 API")
6956420cc064 ("libmbedtls: fix cipher_wrap.c for NIST AES Key Wrap mode")
ad67ef0b43fd ("libmbedtls: fix cipher_wrap.c for chacha20 and chachapoly")
7300f4d97bbf ("libmbedtls: add fault mitigation in mbedtls_rsa_rsassa_pkcs1_v15_verify()")
cec89b62a86d ("libmbedtls: add fault mitigation in mbedtls_rsa_rsassa_pss_verify_ext()")
e7e048796c44 ("libmbedtls: add SM2 curve")
096beff2cd31 ("libmbedtls: mbedtls_mpi_exp_mod(): optimize mempool usage")
7108668efd3f ("libmbedtls: mbedtls_mpi_exp_mod(): reduce stack usage")
0ba4eb8d0572 ("libmbedtls: mbedtls_mpi_exp_mod() initialize W")
3fd6ecf00382 ("libmbedtls: fix no CRT issue")
d5ea7e9e9aa7 ("libmbedtls: add interfaces in mbedtls for context memory operation")
2b0fb3f1fa3d ("libmedtls: mpi_miller_rabin: increase count limit")
2c3301ab99bb ("libmbedtls: add mbedtls_mpi_init_mempool()")
9a111f0da04b ("libmbedtls: make mbedtls_mpi_mont*() available")
804fe3a374f5 ("mbedtls: configure mbedtls to reach for config")
b28a41531427 ("mbedtls: remove default include/mbedtls/config.h")
dfafe507bbef ("Import mbedtls-3.4.0")

Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Acked-by: Jerome Forissier <jerome.forissier@linaro.org>
Tested-by: Jerome Forissier <jerome.forissier@linaro.org> (vexpress-qemu_armv8a)
diff --git a/lib/libmbedtls/mbedtls/library/constant_time.c b/lib/libmbedtls/mbedtls/library/constant_time.c
index e276d23..552a918 100644
--- a/lib/libmbedtls/mbedtls/library/constant_time.c
+++ b/lib/libmbedtls/mbedtls/library/constant_time.c
@@ -17,7 +17,7 @@
  *  limitations under the License.
  */
 
- /*
+/*
  * The following functions are implemented without using comparison operators, as those
  * might be translated to branches by some compilers on some platforms.
  */
@@ -30,10 +30,11 @@
 
 #if defined(MBEDTLS_BIGNUM_C)
 #include "mbedtls/bignum.h"
+#include "bignum_core.h"
 #endif
 
 #if defined(MBEDTLS_SSL_TLS_C)
-#include "mbedtls/ssl_internal.h"
+#include "ssl_misc.h"
 #endif
 
 #if defined(MBEDTLS_RSA_C)
@@ -45,18 +46,69 @@
 #endif
 
 #include <string.h>
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#define PSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status,    \
+                                                           psa_to_ssl_errors,              \
+                                                           psa_generic_status_to_mbedtls)
+#endif
 
-int mbedtls_ct_memcmp( const void *a,
-                       const void *b,
-                       size_t n )
+/*
+ * Define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS where assembly is present to
+ * perform fast unaligned access to volatile data.
+ *
+ * This is needed because mbedtls_get_unaligned_uintXX etc don't support volatile
+ * memory accesses.
+ *
+ * Some of these definitions could be moved into alignment.h but for now they are
+ * only used here.
+ */
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) && defined(MBEDTLS_HAVE_ASM)
+#if defined(__arm__) || defined(__thumb__) || defined(__thumb2__) || defined(__aarch64__)
+#define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS
+#endif
+#endif
+
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
+static inline uint32_t mbedtls_get_unaligned_volatile_uint32(volatile const unsigned char *p)
 {
-    size_t i;
+    /* This is UB, even where it's safe:
+     *    return *((volatile uint32_t*)p);
+     * so instead the same thing is expressed in assembly below.
+     */
+    uint32_t r;
+#if defined(__arm__) || defined(__thumb__) || defined(__thumb2__)
+    asm volatile ("ldr %0, [%1]" : "=r" (r) : "r" (p) :);
+#elif defined(__aarch64__)
+    asm volatile ("ldr %w0, [%1]" : "=r" (r) : "r" (p) :);
+#endif
+    return r;
+}
+#endif /* MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS */
+
+int mbedtls_ct_memcmp(const void *a,
+                      const void *b,
+                      size_t n)
+{
+    size_t i = 0;
+    /*
+     * `A` and `B` are cast to volatile to ensure that the compiler
+     * generates code that always fully reads both buffers.
+     * Otherwise it could generate a test to exit early if `diff` has all
+     * bits set early in the loop.
+     */
     volatile const unsigned char *A = (volatile const unsigned char *) a;
     volatile const unsigned char *B = (volatile const unsigned char *) b;
-    volatile unsigned char diff = 0;
+    uint32_t diff = 0;
 
-    for( i = 0; i < n; i++ )
-    {
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
+    for (; (i + 4) <= n; i += 4) {
+        uint32_t x = mbedtls_get_unaligned_volatile_uint32(A + i);
+        uint32_t y = mbedtls_get_unaligned_volatile_uint32(B + i);
+        diff |= x ^ y;
+    }
+#endif
+
+    for (; i < n; i++) {
         /* Read volatile data in order before computing diff.
          * This avoids IAR compiler warning:
          * 'the order of volatile accesses is undefined ..' */
@@ -64,10 +116,10 @@
         diff |= x ^ y;
     }
 
-    return( (int)diff );
+    return (int) diff;
 }
 
-unsigned mbedtls_ct_uint_mask( unsigned value )
+unsigned mbedtls_ct_uint_mask(unsigned value)
 {
     /* MSVC has a warning about unary minus on unsigned, but this is
      * well-defined and precisely what we want to do here */
@@ -75,15 +127,15 @@
 #pragma warning( push )
 #pragma warning( disable : 4146 )
 #endif
-    return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
+    return -((value | -value) >> (sizeof(value) * 8 - 1));
 #if defined(_MSC_VER)
 #pragma warning( pop )
 #endif
 }
 
-#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
+#if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
 
-size_t mbedtls_ct_size_mask( size_t value )
+size_t mbedtls_ct_size_mask(size_t value)
 {
     /* MSVC has a warning about unary minus on unsigned integer types,
      * but this is well-defined and precisely what we want to do here. */
@@ -91,17 +143,17 @@
 #pragma warning( push )
 #pragma warning( disable : 4146 )
 #endif
-    return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
+    return -((value | -value) >> (sizeof(value) * 8 - 1));
 #if defined(_MSC_VER)
 #pragma warning( pop )
 #endif
 }
 
-#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
+#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
 
 #if defined(MBEDTLS_BIGNUM_C)
 
-mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask( mbedtls_mpi_uint value )
+mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)
 {
     /* MSVC has a warning about unary minus on unsigned, but this is
      * well-defined and precisely what we want to do here */
@@ -109,7 +161,7 @@
 #pragma warning( push )
 #pragma warning( disable : 4146 )
 #endif
-    return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
+    return -((value | -value) >> (sizeof(value) * 8 - 1));
 #if defined(_MSC_VER)
 #pragma warning( pop )
 #endif
@@ -131,25 +183,25 @@
  *
  * \return      All-bits-one if \p x is less than \p y, otherwise zero.
  */
-static size_t mbedtls_ct_size_mask_lt( size_t x,
-                                       size_t y )
+static size_t mbedtls_ct_size_mask_lt(size_t x,
+                                      size_t y)
 {
     /* This has the most significant bit set if and only if x < y */
     const size_t sub = x - y;
 
     /* sub1 = (x < y) ? 1 : 0 */
-    const size_t sub1 = sub >> ( sizeof( sub ) * 8 - 1 );
+    const size_t sub1 = sub >> (sizeof(sub) * 8 - 1);
 
     /* mask = (x < y) ? 0xff... : 0x00... */
-    const size_t mask = mbedtls_ct_size_mask( sub1 );
+    const size_t mask = mbedtls_ct_size_mask(sub1);
 
-    return( mask );
+    return mask;
 }
 
-size_t mbedtls_ct_size_mask_ge( size_t x,
-                                size_t y )
+size_t mbedtls_ct_size_mask_ge(size_t x,
+                               size_t y)
 {
-    return( ~mbedtls_ct_size_mask_lt( x, y ) );
+    return ~mbedtls_ct_size_mask_lt(x, y);
 }
 
 #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
@@ -161,21 +213,21 @@
  * Constant flow with respect to c.
  */
 MBEDTLS_STATIC_TESTABLE
-unsigned char mbedtls_ct_uchar_mask_of_range( unsigned char low,
-                                              unsigned char high,
-                                              unsigned char c )
+unsigned char mbedtls_ct_uchar_mask_of_range(unsigned char low,
+                                             unsigned char high,
+                                             unsigned char c)
 {
     /* low_mask is: 0 if low <= c, 0x...ff if low > c */
-    unsigned low_mask = ( (unsigned) c - low ) >> 8;
+    unsigned low_mask = ((unsigned) c - low) >> 8;
     /* high_mask is: 0 if c <= high, 0x...ff if c > high */
-    unsigned high_mask = ( (unsigned) high - c ) >> 8;
-    return( ~( low_mask | high_mask ) & 0xff );
+    unsigned high_mask = ((unsigned) high - c) >> 8;
+    return ~(low_mask | high_mask) & 0xff;
 }
 
 #endif /* MBEDTLS_BASE64_C */
 
-unsigned mbedtls_ct_size_bool_eq( size_t x,
-                                  size_t y )
+unsigned mbedtls_ct_size_bool_eq(size_t x,
+                                 size_t y)
 {
     /* diff = 0 if x == y, non-zero otherwise */
     const size_t diff = x ^ y;
@@ -188,16 +240,16 @@
 #endif
 
     /* diff_msb's most significant bit is equal to x != y */
-    const size_t diff_msb = ( diff | (size_t) -diff );
+    const size_t diff_msb = (diff | (size_t) -diff);
 
 #if defined(_MSC_VER)
 #pragma warning( pop )
 #endif
 
     /* diff1 = (x != y) ? 1 : 0 */
-    const unsigned diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
+    const unsigned diff1 = diff_msb >> (sizeof(diff_msb) * 8 - 1);
 
-    return( 1 ^ diff1 );
+    return 1 ^ diff1;
 }
 
 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
@@ -213,19 +265,19 @@
  *
  * \return      1 if \p x greater than \p y, otherwise 0.
  */
-static unsigned mbedtls_ct_size_gt( size_t x,
-                                    size_t y )
+static unsigned mbedtls_ct_size_gt(size_t x,
+                                   size_t y)
 {
     /* Return the sign bit (1 for negative) of (y - x). */
-    return( ( y - x ) >> ( sizeof( size_t ) * 8 - 1 ) );
+    return (y - x) >> (sizeof(size_t) * 8 - 1);
 }
 
 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
 
 #if defined(MBEDTLS_BIGNUM_C)
 
-unsigned mbedtls_ct_mpi_uint_lt( const mbedtls_mpi_uint x,
-                                 const mbedtls_mpi_uint y )
+unsigned mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,
+                                const mbedtls_mpi_uint y)
 {
     mbedtls_mpi_uint ret;
     mbedtls_mpi_uint cond;
@@ -233,12 +285,12 @@
     /*
      * Check if the most significant bits (MSB) of the operands are different.
      */
-    cond = ( x ^ y );
+    cond = (x ^ y);
     /*
      * If the MSB are the same then the difference x-y will be negative (and
      * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
      */
-    ret = ( x - y ) & ~cond;
+    ret = (x - y) & ~cond;
     /*
      * If the MSB are different, then the operand with the MSB of 1 is the
      * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
@@ -247,19 +299,19 @@
     ret |= y & cond;
 
 
-    ret = ret >> ( sizeof( mbedtls_mpi_uint ) * 8 - 1 );
+    ret = ret >> (sizeof(mbedtls_mpi_uint) * 8 - 1);
 
     return (unsigned) ret;
 }
 
 #endif /* MBEDTLS_BIGNUM_C */
 
-unsigned mbedtls_ct_uint_if( unsigned condition,
-                             unsigned if1,
-                             unsigned if0 )
+unsigned mbedtls_ct_uint_if(unsigned condition,
+                            unsigned if1,
+                            unsigned if0)
 {
-    unsigned mask = mbedtls_ct_uint_mask( condition );
-    return( ( mask & if1 ) | (~mask & if0 ) );
+    unsigned mask = mbedtls_ct_uint_mask(condition);
+    return (mask & if1) | (~mask & if0);
 }
 
 #if defined(MBEDTLS_BIGNUM_C)
@@ -272,15 +324,15 @@
  * \note if1 and if0 must be either 1 or -1, otherwise the result
  *       is undefined.
  *
- * \param condition     Condition to test.
+ * \param condition     Condition to test; must be either 0 or 1.
  * \param if1           The first sign; must be either +1 or -1.
  * \param if0           The second sign; must be either +1 or -1.
  *
  * \return  \c if1 if \p condition is nonzero, otherwise \c if0.
  * */
-static int mbedtls_ct_cond_select_sign( unsigned char condition,
-                                        int if1,
-                                        int if0 )
+static int mbedtls_ct_cond_select_sign(unsigned char condition,
+                                       int if1,
+                                       int if0)
 {
     /* In order to avoid questions about what we can reasonably assume about
      * the representations of signed integers, move everything to unsigned
@@ -292,16 +344,16 @@
     const unsigned mask = condition << 1;
 
     /* select uif1 or uif0 */
-    unsigned ur = ( uif0 & ~mask ) | ( uif1 & mask );
+    unsigned ur = (uif0 & ~mask) | (uif1 & mask);
 
     /* ur is now 0 or 2, convert back to -1 or +1 */
-    return( (int) ur - 1 );
+    return (int) ur - 1;
 }
 
-void mbedtls_ct_mpi_uint_cond_assign( size_t n,
-                                      mbedtls_mpi_uint *dest,
-                                      const mbedtls_mpi_uint *src,
-                                      unsigned char condition )
+void mbedtls_ct_mpi_uint_cond_assign(size_t n,
+                                     mbedtls_mpi_uint *dest,
+                                     const mbedtls_mpi_uint *src,
+                                     unsigned char condition)
 {
     size_t i;
 
@@ -319,43 +371,44 @@
 #pragma warning( pop )
 #endif
 
-    for( i = 0; i < n; i++ )
-        dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
+    for (i = 0; i < n; i++) {
+        dest[i] = (src[i] & mask) | (dest[i] & ~mask);
+    }
 }
 
 #endif /* MBEDTLS_BIGNUM_C */
 
 #if defined(MBEDTLS_BASE64_C)
 
-unsigned char mbedtls_ct_base64_enc_char( unsigned char value )
+unsigned char mbedtls_ct_base64_enc_char(unsigned char value)
 {
     unsigned char digit = 0;
     /* For each range of values, if value is in that range, mask digit with
      * the corresponding value. Since value can only be in a single range,
      * only at most one masking will change digit. */
-    digit |= mbedtls_ct_uchar_mask_of_range(  0, 25, value ) & ( 'A' + value );
-    digit |= mbedtls_ct_uchar_mask_of_range( 26, 51, value ) & ( 'a' + value - 26 );
-    digit |= mbedtls_ct_uchar_mask_of_range( 52, 61, value ) & ( '0' + value - 52 );
-    digit |= mbedtls_ct_uchar_mask_of_range( 62, 62, value ) & '+';
-    digit |= mbedtls_ct_uchar_mask_of_range( 63, 63, value ) & '/';
-    return( digit );
+    digit |= mbedtls_ct_uchar_mask_of_range(0, 25, value) & ('A' + value);
+    digit |= mbedtls_ct_uchar_mask_of_range(26, 51, value) & ('a' + value - 26);
+    digit |= mbedtls_ct_uchar_mask_of_range(52, 61, value) & ('0' + value - 52);
+    digit |= mbedtls_ct_uchar_mask_of_range(62, 62, value) & '+';
+    digit |= mbedtls_ct_uchar_mask_of_range(63, 63, value) & '/';
+    return digit;
 }
 
-signed char mbedtls_ct_base64_dec_value( unsigned char c )
+signed char mbedtls_ct_base64_dec_value(unsigned char c)
 {
     unsigned char val = 0;
     /* For each range of digits, if c is in that range, mask val with
      * the corresponding value. Since c can only be in a single range,
      * only at most one masking will change val. Set val to one plus
      * the desired value so that it stays 0 if c is in none of the ranges. */
-    val |= mbedtls_ct_uchar_mask_of_range( 'A', 'Z', c ) & ( c - 'A' +  0 + 1 );
-    val |= mbedtls_ct_uchar_mask_of_range( 'a', 'z', c ) & ( c - 'a' + 26 + 1 );
-    val |= mbedtls_ct_uchar_mask_of_range( '0', '9', c ) & ( c - '0' + 52 + 1 );
-    val |= mbedtls_ct_uchar_mask_of_range( '+', '+', c ) & ( c - '+' + 62 + 1 );
-    val |= mbedtls_ct_uchar_mask_of_range( '/', '/', c ) & ( c - '/' + 63 + 1 );
+    val |= mbedtls_ct_uchar_mask_of_range('A', 'Z', c) & (c - 'A' +  0 + 1);
+    val |= mbedtls_ct_uchar_mask_of_range('a', 'z', c) & (c - 'a' + 26 + 1);
+    val |= mbedtls_ct_uchar_mask_of_range('0', '9', c) & (c - '0' + 52 + 1);
+    val |= mbedtls_ct_uchar_mask_of_range('+', '+', c) & (c - '+' + 62 + 1);
+    val |= mbedtls_ct_uchar_mask_of_range('/', '/', c) & (c - '/' + 63 + 1);
     /* At this point, val is 0 if c is an invalid digit and v+1 if c is
      * a digit with the value v. */
-    return( val - 1 );
+    return val - 1;
 }
 
 #endif /* MBEDTLS_BASE64_C */
@@ -378,73 +431,214 @@
  * \param total     Total size of the buffer.
  * \param offset    Offset from which to copy \p total - \p offset bytes.
  */
-static void mbedtls_ct_mem_move_to_left( void *start,
-                                         size_t total,
-                                         size_t offset )
+static void mbedtls_ct_mem_move_to_left(void *start,
+                                        size_t total,
+                                        size_t offset)
 {
     volatile unsigned char *buf = start;
     size_t i, n;
-    if( total == 0 )
+    if (total == 0) {
         return;
-    for( i = 0; i < total; i++ )
-    {
-        unsigned no_op = mbedtls_ct_size_gt( total - offset, i );
+    }
+    for (i = 0; i < total; i++) {
+        unsigned no_op = mbedtls_ct_size_gt(total - offset, i);
         /* The first `total - offset` passes are a no-op. The last
          * `offset` passes shift the data one byte to the left and
          * zero out the last byte. */
-        for( n = 0; n < total - 1; n++ )
-        {
+        for (n = 0; n < total - 1; n++) {
             unsigned char current = buf[n];
             unsigned char next = buf[n+1];
-            buf[n] = mbedtls_ct_uint_if( no_op, current, next );
+            buf[n] = mbedtls_ct_uint_if(no_op, current, next);
         }
-        buf[total-1] = mbedtls_ct_uint_if( no_op, buf[total-1], 0 );
+        buf[total-1] = mbedtls_ct_uint_if(no_op, buf[total-1], 0);
     }
 }
 
 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
 
-#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
+#if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
 
-void mbedtls_ct_memcpy_if_eq( unsigned char *dest,
-                              const unsigned char *src,
-                              size_t len,
-                              size_t c1,
-                              size_t c2 )
+void mbedtls_ct_memcpy_if_eq(unsigned char *dest,
+                             const unsigned char *src,
+                             size_t len,
+                             size_t c1,
+                             size_t c2)
 {
     /* mask = c1 == c2 ? 0xff : 0x00 */
-    const size_t equal = mbedtls_ct_size_bool_eq( c1, c2 );
-    const unsigned char mask = (unsigned char) mbedtls_ct_size_mask( equal );
+    const size_t equal = mbedtls_ct_size_bool_eq(c1, c2);
 
     /* dest[i] = c1 == c2 ? src[i] : dest[i] */
-    for( size_t i = 0; i < len; i++ )
-        dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
-}
+    size_t i = 0;
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
+    const uint32_t mask32 = (uint32_t) mbedtls_ct_size_mask(equal);
+    const unsigned char mask = (unsigned char) mask32 & 0xff;
 
-void mbedtls_ct_memcpy_offset( unsigned char *dest,
-                               const unsigned char *src,
-                               size_t offset,
-                               size_t offset_min,
-                               size_t offset_max,
-                               size_t len )
-{
-    size_t offsetval;
-
-    for( offsetval = offset_min; offsetval <= offset_max; offsetval++ )
-    {
-        mbedtls_ct_memcpy_if_eq( dest, src + offsetval, len,
-                                 offsetval, offset );
+    for (; (i + 4) <= len; i += 4) {
+        uint32_t a = mbedtls_get_unaligned_uint32(src  + i) &  mask32;
+        uint32_t b = mbedtls_get_unaligned_uint32(dest + i) & ~mask32;
+        mbedtls_put_unaligned_uint32(dest + i, a | b);
+    }
+#else
+    const unsigned char mask = (unsigned char) mbedtls_ct_size_mask(equal);
+#endif /* MBEDTLS_EFFICIENT_UNALIGNED_ACCESS */
+    for (; i < len; i++) {
+        dest[i] = (src[i] & mask) | (dest[i] & ~mask);
     }
 }
 
-int mbedtls_ct_hmac( mbedtls_md_context_t *ctx,
-                     const unsigned char *add_data,
-                     size_t add_data_len,
-                     const unsigned char *data,
-                     size_t data_len_secret,
-                     size_t min_data_len,
-                     size_t max_data_len,
-                     unsigned char *output )
+void mbedtls_ct_memcpy_offset(unsigned char *dest,
+                              const unsigned char *src,
+                              size_t offset,
+                              size_t offset_min,
+                              size_t offset_max,
+                              size_t len)
+{
+    size_t offsetval;
+
+    for (offsetval = offset_min; offsetval <= offset_max; offsetval++) {
+        mbedtls_ct_memcpy_if_eq(dest, src + offsetval, len,
+                                offsetval, offset);
+    }
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+
+#if defined(PSA_WANT_ALG_SHA_384)
+#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_384)
+#elif defined(PSA_WANT_ALG_SHA_256)
+#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_256)
+#else /* See check_config.h */
+#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_1)
+#endif
+
+int mbedtls_ct_hmac(mbedtls_svc_key_id_t key,
+                    psa_algorithm_t mac_alg,
+                    const unsigned char *add_data,
+                    size_t add_data_len,
+                    const unsigned char *data,
+                    size_t data_len_secret,
+                    size_t min_data_len,
+                    size_t max_data_len,
+                    unsigned char *output)
+{
+    /*
+     * This function breaks the HMAC abstraction and uses psa_hash_clone()
+     * extension in order to get constant-flow behaviour.
+     *
+     * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
+     * concatenation, and okey/ikey are the XOR of the key with some fixed bit
+     * patterns (see RFC 2104, sec. 2).
+     *
+     * We'll first compute ikey/okey, then inner_hash = HASH(ikey + msg) by
+     * hashing up to minlen, then cloning the context, and for each byte up
+     * to maxlen finishing up the hash computation, keeping only the
+     * correct result.
+     *
+     * Then we only need to compute HASH(okey + inner_hash) and we're done.
+     */
+    psa_algorithm_t hash_alg = PSA_ALG_HMAC_GET_HASH(mac_alg);
+    const size_t block_size = PSA_HASH_BLOCK_LENGTH(hash_alg);
+    unsigned char key_buf[MAX_HASH_BLOCK_LENGTH];
+    const size_t hash_size = PSA_HASH_LENGTH(hash_alg);
+    psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
+    size_t hash_length;
+
+    unsigned char aux_out[PSA_HASH_MAX_SIZE];
+    psa_hash_operation_t aux_operation = PSA_HASH_OPERATION_INIT;
+    size_t offset;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    size_t mac_key_length;
+    size_t i;
+
+#define PSA_CHK(func_call)        \
+    do {                            \
+        status = (func_call);       \
+        if (status != PSA_SUCCESS) \
+        goto cleanup;           \
+    } while (0)
+
+    /* Export MAC key
+     * We assume key length is always exactly the output size
+     * which is never more than the block size, thus we use block_size
+     * as the key buffer size.
+     */
+    PSA_CHK(psa_export_key(key, key_buf, block_size, &mac_key_length));
+
+    /* Calculate ikey */
+    for (i = 0; i < mac_key_length; i++) {
+        key_buf[i] = (unsigned char) (key_buf[i] ^ 0x36);
+    }
+    for (; i < block_size; ++i) {
+        key_buf[i] = 0x36;
+    }
+
+    PSA_CHK(psa_hash_setup(&operation, hash_alg));
+
+    /* Now compute inner_hash = HASH(ikey + msg) */
+    PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
+    PSA_CHK(psa_hash_update(&operation, add_data, add_data_len));
+    PSA_CHK(psa_hash_update(&operation, data, min_data_len));
+
+    /* Fill the hash buffer in advance with something that is
+     * not a valid hash (barring an attack on the hash and
+     * deliberately-crafted input), in case the caller doesn't
+     * check the return status properly. */
+    memset(output, '!', hash_size);
+
+    /* For each possible length, compute the hash up to that point */
+    for (offset = min_data_len; offset <= max_data_len; offset++) {
+        PSA_CHK(psa_hash_clone(&operation, &aux_operation));
+        PSA_CHK(psa_hash_finish(&aux_operation, aux_out,
+                                PSA_HASH_MAX_SIZE, &hash_length));
+        /* Keep only the correct inner_hash in the output buffer */
+        mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
+                                offset, data_len_secret);
+
+        if (offset < max_data_len) {
+            PSA_CHK(psa_hash_update(&operation, data + offset, 1));
+        }
+    }
+
+    /* Abort current operation to prepare for final operation */
+    PSA_CHK(psa_hash_abort(&operation));
+
+    /* Calculate okey */
+    for (i = 0; i < mac_key_length; i++) {
+        key_buf[i] = (unsigned char) ((key_buf[i] ^ 0x36) ^ 0x5C);
+    }
+    for (; i < block_size; ++i) {
+        key_buf[i] = 0x5C;
+    }
+
+    /* Now compute HASH(okey + inner_hash) */
+    PSA_CHK(psa_hash_setup(&operation, hash_alg));
+    PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
+    PSA_CHK(psa_hash_update(&operation, output, hash_size));
+    PSA_CHK(psa_hash_finish(&operation, output, hash_size, &hash_length));
+
+#undef PSA_CHK
+
+cleanup:
+    mbedtls_platform_zeroize(key_buf, MAX_HASH_BLOCK_LENGTH);
+    mbedtls_platform_zeroize(aux_out, PSA_HASH_MAX_SIZE);
+
+    psa_hash_abort(&operation);
+    psa_hash_abort(&aux_operation);
+    return PSA_TO_MBEDTLS_ERR(status);
+}
+
+#undef MAX_HASH_BLOCK_LENGTH
+
+#else
+int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,
+                    const unsigned char *add_data,
+                    size_t add_data_len,
+                    const unsigned char *data,
+                    size_t data_len_secret,
+                    size_t min_data_len,
+                    size_t max_data_len,
+                    unsigned char *output)
 {
     /*
      * This function breaks the HMAC abstraction and uses the md_clone()
@@ -460,79 +654,80 @@
      *
      * Then we only need to compute HASH(okey + inner_hash) and we're done.
      */
-    const mbedtls_md_type_t md_alg = mbedtls_md_get_type( ctx->md_info );
-    /* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5,
+    const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info);
+    /* TLS 1.2 only supports SHA-384, SHA-256, SHA-1, MD-5,
      * all of which have the same block size except SHA-384. */
     const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
     const unsigned char * const ikey = ctx->hmac_ctx;
     const unsigned char * const okey = ikey + block_size;
-    const size_t hash_size = mbedtls_md_get_size( ctx->md_info );
+    const size_t hash_size = mbedtls_md_get_size(ctx->md_info);
 
     unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
     mbedtls_md_context_t aux;
     size_t offset;
     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 
-    mbedtls_md_init( &aux );
+    mbedtls_md_init(&aux);
 
-#define MD_CHK( func_call ) \
+#define MD_CHK(func_call) \
     do {                    \
         ret = (func_call);  \
-        if( ret != 0 )      \
-            goto cleanup;   \
-    } while( 0 )
+        if (ret != 0)      \
+        goto cleanup;   \
+    } while (0)
 
-    MD_CHK( mbedtls_md_setup( &aux, ctx->md_info, 0 ) );
+    MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0));
 
     /* After hmac_start() of hmac_reset(), ikey has already been hashed,
      * so we can start directly with the message */
-    MD_CHK( mbedtls_md_update( ctx, add_data, add_data_len ) );
-    MD_CHK( mbedtls_md_update( ctx, data, min_data_len ) );
+    MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len));
+    MD_CHK(mbedtls_md_update(ctx, data, min_data_len));
 
     /* Fill the hash buffer in advance with something that is
      * not a valid hash (barring an attack on the hash and
      * deliberately-crafted input), in case the caller doesn't
      * check the return status properly. */
-    memset( output, '!', hash_size );
+    memset(output, '!', hash_size);
 
     /* For each possible length, compute the hash up to that point */
-    for( offset = min_data_len; offset <= max_data_len; offset++ )
-    {
-        MD_CHK( mbedtls_md_clone( &aux, ctx ) );
-        MD_CHK( mbedtls_md_finish( &aux, aux_out ) );
+    for (offset = min_data_len; offset <= max_data_len; offset++) {
+        MD_CHK(mbedtls_md_clone(&aux, ctx));
+        MD_CHK(mbedtls_md_finish(&aux, aux_out));
         /* Keep only the correct inner_hash in the output buffer */
-        mbedtls_ct_memcpy_if_eq( output, aux_out, hash_size,
-                                 offset, data_len_secret );
+        mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
+                                offset, data_len_secret);
 
-        if( offset < max_data_len )
-            MD_CHK( mbedtls_md_update( ctx, data + offset, 1 ) );
+        if (offset < max_data_len) {
+            MD_CHK(mbedtls_md_update(ctx, data + offset, 1));
+        }
     }
 
     /* The context needs to finish() before it starts() again */
-    MD_CHK( mbedtls_md_finish( ctx, aux_out ) );
+    MD_CHK(mbedtls_md_finish(ctx, aux_out));
 
     /* Now compute HASH(okey + inner_hash) */
-    MD_CHK( mbedtls_md_starts( ctx ) );
-    MD_CHK( mbedtls_md_update( ctx, okey, block_size ) );
-    MD_CHK( mbedtls_md_update( ctx, output, hash_size ) );
-    MD_CHK( mbedtls_md_finish( ctx, output ) );
+    MD_CHK(mbedtls_md_starts(ctx));
+    MD_CHK(mbedtls_md_update(ctx, okey, block_size));
+    MD_CHK(mbedtls_md_update(ctx, output, hash_size));
+    MD_CHK(mbedtls_md_finish(ctx, output));
 
     /* Done, get ready for next time */
-    MD_CHK( mbedtls_md_hmac_reset( ctx ) );
+    MD_CHK(mbedtls_md_hmac_reset(ctx));
 
 #undef MD_CHK
 
 cleanup:
-    mbedtls_md_free( &aux );
-    return( ret );
+    mbedtls_md_free(&aux);
+    return ret;
 }
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
 
-#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
+#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
 
 #if defined(MBEDTLS_BIGNUM_C)
 
-#define MPI_VALIDATE_RET( cond )                                       \
-    MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
+#define MPI_VALIDATE_RET(cond)                                       \
+    MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
 
 /*
  * Conditionally assign X = Y, without leaking information
@@ -546,30 +741,29 @@
  */
 __declspec(noinline)
 #endif
-int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X,
-                                  const mbedtls_mpi *Y,
-                                  unsigned char assign )
+int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
+                                 const mbedtls_mpi *Y,
+                                 unsigned char assign)
 {
     int ret = 0;
-    size_t i;
-    mbedtls_mpi_uint limb_mask;
-    MPI_VALIDATE_RET( X != NULL );
-    MPI_VALIDATE_RET( Y != NULL );
+    MPI_VALIDATE_RET(X != NULL);
+    MPI_VALIDATE_RET(Y != NULL);
 
     /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
-    limb_mask = mbedtls_ct_mpi_uint_mask( assign );;
+    mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask(assign);
 
-    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
 
-    X->s = mbedtls_ct_cond_select_sign( assign, Y->s, X->s );
+    X->s = mbedtls_ct_cond_select_sign(assign, Y->s, X->s);
 
-    mbedtls_ct_mpi_uint_cond_assign( Y->n, X->p, Y->p, assign );
+    mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, assign);
 
-    for( i = Y->n; i < X->n; i++ )
+    for (size_t i = Y->n; i < X->n; i++) {
         X->p[i] &= ~limb_mask;
+    }
 
 cleanup:
-    return( ret );
+    return ret;
 }
 
 /*
@@ -578,73 +772,107 @@
  * Here it is not ok to simply swap the pointers, which would lead to
  * different memory access patterns when X and Y are used afterwards.
  */
-int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X,
-                                mbedtls_mpi *Y,
-                                unsigned char swap )
+int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
+                               mbedtls_mpi *Y,
+                               unsigned char swap)
 {
-    int ret, s;
-    size_t i;
-    mbedtls_mpi_uint limb_mask;
-    mbedtls_mpi_uint tmp;
-    MPI_VALIDATE_RET( X != NULL );
-    MPI_VALIDATE_RET( Y != NULL );
+    int ret = 0;
+    int s;
+    MPI_VALIDATE_RET(X != NULL);
+    MPI_VALIDATE_RET(Y != NULL);
 
-    if( X == Y )
-        return( 0 );
-
-    /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
-    limb_mask = mbedtls_ct_mpi_uint_mask( swap );
-
-    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
-    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
-
-    s = X->s;
-    X->s = mbedtls_ct_cond_select_sign( swap, Y->s, X->s );
-    Y->s = mbedtls_ct_cond_select_sign( swap, s, Y->s );
-
-
-    for( i = 0; i < X->n; i++ )
-    {
-        tmp = X->p[i];
-        X->p[i] = ( X->p[i] & ~limb_mask ) | ( Y->p[i] & limb_mask );
-        Y->p[i] = ( Y->p[i] & ~limb_mask ) | (     tmp & limb_mask );
+    if (X == Y) {
+        return 0;
     }
 
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
+
+    s = X->s;
+    X->s = mbedtls_ct_cond_select_sign(swap, Y->s, X->s);
+    Y->s = mbedtls_ct_cond_select_sign(swap, s, Y->s);
+
+    mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, swap);
+
 cleanup:
-    return( ret );
+    return ret;
+}
+
+/*
+ * Compare unsigned values in constant time
+ */
+unsigned mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
+                                const mbedtls_mpi_uint *B,
+                                size_t limbs)
+{
+    unsigned ret, cond, done;
+
+    /* The value of any of these variables is either 0 or 1 for the rest of
+     * their scope. */
+    ret = cond = done = 0;
+
+    for (size_t i = limbs; i > 0; i--) {
+        /*
+         * If B[i - 1] < A[i - 1] then A < B is false and the result must
+         * remain 0.
+         *
+         * Again even if we can make a decision, we just mark the result and
+         * the fact that we are done and continue looping.
+         */
+        cond = mbedtls_ct_mpi_uint_lt(B[i - 1], A[i - 1]);
+        done |= cond;
+
+        /*
+         * If A[i - 1] < B[i - 1] then A < B is true.
+         *
+         * Again even if we can make a decision, we just mark the result and
+         * the fact that we are done and continue looping.
+         */
+        cond = mbedtls_ct_mpi_uint_lt(A[i - 1], B[i - 1]);
+        ret |= cond & (1 - done);
+        done |= cond;
+    }
+
+    /*
+     * If all the limbs were equal, then the numbers are equal, A < B is false
+     * and leaving the result 0 is correct.
+     */
+
+    return ret;
 }
 
 /*
  * Compare signed values in constant time
  */
-int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X,
-                           const mbedtls_mpi *Y,
-                           unsigned *ret )
+int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
+                          const mbedtls_mpi *Y,
+                          unsigned *ret)
 {
     size_t i;
     /* The value of any of these variables is either 0 or 1 at all times. */
     unsigned cond, done, X_is_negative, Y_is_negative;
 
-    MPI_VALIDATE_RET( X != NULL );
-    MPI_VALIDATE_RET( Y != NULL );
-    MPI_VALIDATE_RET( ret != NULL );
+    MPI_VALIDATE_RET(X != NULL);
+    MPI_VALIDATE_RET(Y != NULL);
+    MPI_VALIDATE_RET(ret != NULL);
 
-    if( X->n != Y->n )
+    if (X->n != Y->n) {
         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
 
     /*
      * Set sign_N to 1 if N >= 0, 0 if N < 0.
      * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
      */
-    X_is_negative = ( X->s & 2 ) >> 1;
-    Y_is_negative = ( Y->s & 2 ) >> 1;
+    X_is_negative = (X->s & 2) >> 1;
+    Y_is_negative = (Y->s & 2) >> 1;
 
     /*
      * If the signs are different, then the positive operand is the bigger.
      * That is if X is negative (X_is_negative == 1), then X < Y is true and it
      * is false if X is positive (X_is_negative == 0).
      */
-    cond = ( X_is_negative ^ Y_is_negative );
+    cond = (X_is_negative ^ Y_is_negative);
     *ret = cond & X_is_negative;
 
     /*
@@ -653,8 +881,7 @@
      */
     done = cond;
 
-    for( i = X->n; i > 0; i-- )
-    {
+    for (i = X->n; i > 0; i--) {
         /*
          * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
          * X and Y are negative.
@@ -662,8 +889,8 @@
          * Again even if we can make a decision, we just mark the result and
          * the fact that we are done and continue looping.
          */
-        cond = mbedtls_ct_mpi_uint_lt( Y->p[i - 1], X->p[i - 1] );
-        *ret |= cond & ( 1 - done ) & X_is_negative;
+        cond = mbedtls_ct_mpi_uint_lt(Y->p[i - 1], X->p[i - 1]);
+        *ret |= cond & (1 - done) & X_is_negative;
         done |= cond;
 
         /*
@@ -673,24 +900,23 @@
          * Again even if we can make a decision, we just mark the result and
          * the fact that we are done and continue looping.
          */
-        cond = mbedtls_ct_mpi_uint_lt( X->p[i - 1], Y->p[i - 1] );
-        *ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
+        cond = mbedtls_ct_mpi_uint_lt(X->p[i - 1], Y->p[i - 1]);
+        *ret |= cond & (1 - done) & (1 - X_is_negative);
         done |= cond;
     }
 
-    return( 0 );
+    return 0;
 }
 
 #endif /* MBEDTLS_BIGNUM_C */
 
 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
 
-int mbedtls_ct_rsaes_pkcs1_v15_unpadding( int mode,
-                                          unsigned char *input,
-                                          size_t ilen,
-                                          unsigned char *output,
-                                          size_t output_max_len,
-                                          size_t *olen )
+int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input,
+                                         size_t ilen,
+                                         unsigned char *output,
+                                         size_t output_max_len,
+                                         size_t *olen)
 {
     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
     size_t i, plaintext_max_size;
@@ -711,49 +937,31 @@
     size_t plaintext_size = 0;
     unsigned output_too_large;
 
-    plaintext_max_size = ( output_max_len > ilen - 11 ) ? ilen - 11
+    plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
                                                         : output_max_len;
 
     /* Check and get padding length in constant time and constant
      * memory trace. The first byte must be 0. */
     bad |= input[0];
 
-    if( mode == MBEDTLS_RSA_PRIVATE )
-    {
-        /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
-         * where PS must be at least 8 nonzero bytes. */
-        bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
 
-        /* Read the whole buffer. Set pad_done to nonzero if we find
-         * the 0x00 byte and remember the padding length in pad_count. */
-        for( i = 2; i < ilen; i++ )
-        {
-            pad_done  |= ((input[i] | (unsigned char)-input[i]) >> 7) ^ 1;
-            pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
-        }
-    }
-    else
-    {
-        /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
-         * where PS must be at least 8 bytes with the value 0xFF. */
-        bad |= input[1] ^ MBEDTLS_RSA_SIGN;
+    /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
+     * where PS must be at least 8 nonzero bytes. */
+    bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
 
-        /* Read the whole buffer. Set pad_done to nonzero if we find
-         * the 0x00 byte and remember the padding length in pad_count.
-         * If there's a non-0xff byte in the padding, the padding is bad. */
-        for( i = 2; i < ilen; i++ )
-        {
-            pad_done |= mbedtls_ct_uint_if( input[i], 0, 1 );
-            pad_count += mbedtls_ct_uint_if( pad_done, 0, 1 );
-            bad |= mbedtls_ct_uint_if( pad_done, 0, input[i] ^ 0xFF );
-        }
+    /* Read the whole buffer. Set pad_done to nonzero if we find
+     * the 0x00 byte and remember the padding length in pad_count. */
+    for (i = 2; i < ilen; i++) {
+        pad_done  |= ((input[i] | (unsigned char) -input[i]) >> 7) ^ 1;
+        pad_count += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1;
     }
 
+
     /* If pad_done is still zero, there's no data, only unfinished padding. */
-    bad |= mbedtls_ct_uint_if( pad_done, 0, 1 );
+    bad |= mbedtls_ct_uint_if(pad_done, 0, 1);
 
     /* There must be at least 8 bytes of padding. */
-    bad |= mbedtls_ct_size_gt( 8, pad_count );
+    bad |= mbedtls_ct_size_gt(8, pad_count);
 
     /* If the padding is valid, set plaintext_size to the number of
      * remaining bytes after stripping the padding. If the padding
@@ -763,24 +971,24 @@
      * validity through timing. RSA keys are small enough that all the
      * size_t values involved fit in unsigned int. */
     plaintext_size = mbedtls_ct_uint_if(
-                        bad, (unsigned) plaintext_max_size,
-                        (unsigned) ( ilen - pad_count - 3 ) );
+        bad, (unsigned) plaintext_max_size,
+        (unsigned) (ilen - pad_count - 3));
 
     /* Set output_too_large to 0 if the plaintext fits in the output
      * buffer and to 1 otherwise. */
-    output_too_large = mbedtls_ct_size_gt( plaintext_size,
-                                           plaintext_max_size );
+    output_too_large = mbedtls_ct_size_gt(plaintext_size,
+                                          plaintext_max_size);
 
     /* Set ret without branches to avoid timing attacks. Return:
      * - INVALID_PADDING if the padding is bad (bad != 0).
      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
      *   plaintext does not fit in the output buffer.
      * - 0 if the padding is correct. */
-    ret = - (int) mbedtls_ct_uint_if(
-                    bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
-                    mbedtls_ct_uint_if( output_too_large,
-                                        - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
-                                        0 ) );
+    ret = -(int) mbedtls_ct_uint_if(
+        bad, -MBEDTLS_ERR_RSA_INVALID_PADDING,
+        mbedtls_ct_uint_if(output_too_large,
+                           -MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
+                           0));
 
     /* If the padding is bad or the plaintext is too large, zero the
      * data that we're about to copy to the output buffer.
@@ -788,17 +996,18 @@
      * from the same buffer whether the padding is good or not to
      * avoid leaking the padding validity through overall timing or
      * through memory or cache access patterns. */
-    bad = mbedtls_ct_uint_mask( bad | output_too_large );
-    for( i = 11; i < ilen; i++ )
+    bad = mbedtls_ct_uint_mask(bad | output_too_large);
+    for (i = 11; i < ilen; i++) {
         input[i] &= ~bad;
+    }
 
     /* If the plaintext is too large, truncate it to the buffer size.
      * Copy anyway to avoid revealing the length through timing, because
      * revealing the length is as bad as revealing the padding validity
      * for a Bleichenbacher attack. */
-    plaintext_size = mbedtls_ct_uint_if( output_too_large,
-                                         (unsigned) plaintext_max_size,
-                                         (unsigned) plaintext_size );
+    plaintext_size = mbedtls_ct_uint_if(output_too_large,
+                                        (unsigned) plaintext_max_size,
+                                        (unsigned) plaintext_size);
 
     /* Move the plaintext to the leftmost position where it can start in
      * the working buffer, i.e. make it start plaintext_max_size from
@@ -806,9 +1015,9 @@
      * does not depend on the plaintext size. After this move, the
      * starting location of the plaintext is no longer sensitive
      * information. */
-    mbedtls_ct_mem_move_to_left( input + ilen - plaintext_max_size,
-                                 plaintext_max_size,
-                                 plaintext_max_size - plaintext_size );
+    mbedtls_ct_mem_move_to_left(input + ilen - plaintext_max_size,
+                                plaintext_max_size,
+                                plaintext_max_size - plaintext_size);
 
     /* Finally copy the decrypted plaintext plus trailing zeros into the output
      * buffer. If output_max_len is 0, then output may be an invalid pointer
@@ -817,8 +1026,9 @@
      * user-provided output buffer), which is independent from plaintext
      * length, validity of padding, success of the decryption, and other
      * secrets. */
-    if( output_max_len != 0 )
-        memcpy( output, input + ilen - plaintext_max_size, plaintext_max_size );
+    if (output_max_len != 0) {
+        memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
+    }
 
     /* Report the amount of data we copied to the output buffer. In case
      * of errors (bad padding or output too large), the value of *olen
@@ -826,7 +1036,7 @@
      * to the good case limits the risks of leaking the padding validity. */
     *olen = plaintext_size;
 
-    return( ret );
+    return ret;
 }
 
 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */