Squashed commit upgrading to mbedtls-3.4.0
Squash merging branch import/mbedtls-3.4.0
8225713449d3 ("libmbedtls: fix unrecognized compiler option")
f03730842d7b ("core: ltc: configure internal MD5")
2b0d0c50127c ("core: ltc: configure internal SHA-1 and SHA-224")
0e48a6e17630 ("libmedtls: core: update to mbedTLS 3.4.0 API")
049882b143af ("libutee: update to mbedTLS 3.4.0 API")
982307bf6169 ("core: LTC mpi_desc.c: update to mbedTLS 3.4.0 API")
33218e9eff7b ("ta: pkcs11: update to mbedTLS 3.4.0 API")
6956420cc064 ("libmbedtls: fix cipher_wrap.c for NIST AES Key Wrap mode")
ad67ef0b43fd ("libmbedtls: fix cipher_wrap.c for chacha20 and chachapoly")
7300f4d97bbf ("libmbedtls: add fault mitigation in mbedtls_rsa_rsassa_pkcs1_v15_verify()")
cec89b62a86d ("libmbedtls: add fault mitigation in mbedtls_rsa_rsassa_pss_verify_ext()")
e7e048796c44 ("libmbedtls: add SM2 curve")
096beff2cd31 ("libmbedtls: mbedtls_mpi_exp_mod(): optimize mempool usage")
7108668efd3f ("libmbedtls: mbedtls_mpi_exp_mod(): reduce stack usage")
0ba4eb8d0572 ("libmbedtls: mbedtls_mpi_exp_mod() initialize W")
3fd6ecf00382 ("libmbedtls: fix no CRT issue")
d5ea7e9e9aa7 ("libmbedtls: add interfaces in mbedtls for context memory operation")
2b0fb3f1fa3d ("libmedtls: mpi_miller_rabin: increase count limit")
2c3301ab99bb ("libmbedtls: add mbedtls_mpi_init_mempool()")
9a111f0da04b ("libmbedtls: make mbedtls_mpi_mont*() available")
804fe3a374f5 ("mbedtls: configure mbedtls to reach for config")
b28a41531427 ("mbedtls: remove default include/mbedtls/config.h")
dfafe507bbef ("Import mbedtls-3.4.0")
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Acked-by: Jerome Forissier <jerome.forissier@linaro.org>
Tested-by: Jerome Forissier <jerome.forissier@linaro.org> (vexpress-qemu_armv8a)
diff --git a/lib/libmbedtls/mbedtls/library/constant_time.c b/lib/libmbedtls/mbedtls/library/constant_time.c
index e276d23..552a918 100644
--- a/lib/libmbedtls/mbedtls/library/constant_time.c
+++ b/lib/libmbedtls/mbedtls/library/constant_time.c
@@ -17,7 +17,7 @@
* limitations under the License.
*/
- /*
+/*
* The following functions are implemented without using comparison operators, as those
* might be translated to branches by some compilers on some platforms.
*/
@@ -30,10 +30,11 @@
#if defined(MBEDTLS_BIGNUM_C)
#include "mbedtls/bignum.h"
+#include "bignum_core.h"
#endif
#if defined(MBEDTLS_SSL_TLS_C)
-#include "mbedtls/ssl_internal.h"
+#include "ssl_misc.h"
#endif
#if defined(MBEDTLS_RSA_C)
@@ -45,18 +46,69 @@
#endif
#include <string.h>
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#define PSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status, \
+ psa_to_ssl_errors, \
+ psa_generic_status_to_mbedtls)
+#endif
-int mbedtls_ct_memcmp( const void *a,
- const void *b,
- size_t n )
+/*
+ * Define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS where assembly is present to
+ * perform fast unaligned access to volatile data.
+ *
+ * This is needed because mbedtls_get_unaligned_uintXX etc don't support volatile
+ * memory accesses.
+ *
+ * Some of these definitions could be moved into alignment.h but for now they are
+ * only used here.
+ */
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) && defined(MBEDTLS_HAVE_ASM)
+#if defined(__arm__) || defined(__thumb__) || defined(__thumb2__) || defined(__aarch64__)
+#define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS
+#endif
+#endif
+
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
+static inline uint32_t mbedtls_get_unaligned_volatile_uint32(volatile const unsigned char *p)
{
- size_t i;
+ /* This is UB, even where it's safe:
+ * return *((volatile uint32_t*)p);
+ * so instead the same thing is expressed in assembly below.
+ */
+ uint32_t r;
+#if defined(__arm__) || defined(__thumb__) || defined(__thumb2__)
+ asm volatile ("ldr %0, [%1]" : "=r" (r) : "r" (p) :);
+#elif defined(__aarch64__)
+ asm volatile ("ldr %w0, [%1]" : "=r" (r) : "r" (p) :);
+#endif
+ return r;
+}
+#endif /* MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS */
+
+int mbedtls_ct_memcmp(const void *a,
+ const void *b,
+ size_t n)
+{
+ size_t i = 0;
+ /*
+ * `A` and `B` are cast to volatile to ensure that the compiler
+ * generates code that always fully reads both buffers.
+ * Otherwise it could generate a test to exit early if `diff` has all
+ * bits set early in the loop.
+ */
volatile const unsigned char *A = (volatile const unsigned char *) a;
volatile const unsigned char *B = (volatile const unsigned char *) b;
- volatile unsigned char diff = 0;
+ uint32_t diff = 0;
- for( i = 0; i < n; i++ )
- {
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
+ for (; (i + 4) <= n; i += 4) {
+ uint32_t x = mbedtls_get_unaligned_volatile_uint32(A + i);
+ uint32_t y = mbedtls_get_unaligned_volatile_uint32(B + i);
+ diff |= x ^ y;
+ }
+#endif
+
+ for (; i < n; i++) {
/* Read volatile data in order before computing diff.
* This avoids IAR compiler warning:
* 'the order of volatile accesses is undefined ..' */
@@ -64,10 +116,10 @@
diff |= x ^ y;
}
- return( (int)diff );
+ return (int) diff;
}
-unsigned mbedtls_ct_uint_mask( unsigned value )
+unsigned mbedtls_ct_uint_mask(unsigned value)
{
/* MSVC has a warning about unary minus on unsigned, but this is
* well-defined and precisely what we want to do here */
@@ -75,15 +127,15 @@
#pragma warning( push )
#pragma warning( disable : 4146 )
#endif
- return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
+ return -((value | -value) >> (sizeof(value) * 8 - 1));
#if defined(_MSC_VER)
#pragma warning( pop )
#endif
}
-#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
+#if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
-size_t mbedtls_ct_size_mask( size_t value )
+size_t mbedtls_ct_size_mask(size_t value)
{
/* MSVC has a warning about unary minus on unsigned integer types,
* but this is well-defined and precisely what we want to do here. */
@@ -91,17 +143,17 @@
#pragma warning( push )
#pragma warning( disable : 4146 )
#endif
- return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
+ return -((value | -value) >> (sizeof(value) * 8 - 1));
#if defined(_MSC_VER)
#pragma warning( pop )
#endif
}
-#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
+#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
#if defined(MBEDTLS_BIGNUM_C)
-mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask( mbedtls_mpi_uint value )
+mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)
{
/* MSVC has a warning about unary minus on unsigned, but this is
* well-defined and precisely what we want to do here */
@@ -109,7 +161,7 @@
#pragma warning( push )
#pragma warning( disable : 4146 )
#endif
- return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
+ return -((value | -value) >> (sizeof(value) * 8 - 1));
#if defined(_MSC_VER)
#pragma warning( pop )
#endif
@@ -131,25 +183,25 @@
*
* \return All-bits-one if \p x is less than \p y, otherwise zero.
*/
-static size_t mbedtls_ct_size_mask_lt( size_t x,
- size_t y )
+static size_t mbedtls_ct_size_mask_lt(size_t x,
+ size_t y)
{
/* This has the most significant bit set if and only if x < y */
const size_t sub = x - y;
/* sub1 = (x < y) ? 1 : 0 */
- const size_t sub1 = sub >> ( sizeof( sub ) * 8 - 1 );
+ const size_t sub1 = sub >> (sizeof(sub) * 8 - 1);
/* mask = (x < y) ? 0xff... : 0x00... */
- const size_t mask = mbedtls_ct_size_mask( sub1 );
+ const size_t mask = mbedtls_ct_size_mask(sub1);
- return( mask );
+ return mask;
}
-size_t mbedtls_ct_size_mask_ge( size_t x,
- size_t y )
+size_t mbedtls_ct_size_mask_ge(size_t x,
+ size_t y)
{
- return( ~mbedtls_ct_size_mask_lt( x, y ) );
+ return ~mbedtls_ct_size_mask_lt(x, y);
}
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
@@ -161,21 +213,21 @@
* Constant flow with respect to c.
*/
MBEDTLS_STATIC_TESTABLE
-unsigned char mbedtls_ct_uchar_mask_of_range( unsigned char low,
- unsigned char high,
- unsigned char c )
+unsigned char mbedtls_ct_uchar_mask_of_range(unsigned char low,
+ unsigned char high,
+ unsigned char c)
{
/* low_mask is: 0 if low <= c, 0x...ff if low > c */
- unsigned low_mask = ( (unsigned) c - low ) >> 8;
+ unsigned low_mask = ((unsigned) c - low) >> 8;
/* high_mask is: 0 if c <= high, 0x...ff if c > high */
- unsigned high_mask = ( (unsigned) high - c ) >> 8;
- return( ~( low_mask | high_mask ) & 0xff );
+ unsigned high_mask = ((unsigned) high - c) >> 8;
+ return ~(low_mask | high_mask) & 0xff;
}
#endif /* MBEDTLS_BASE64_C */
-unsigned mbedtls_ct_size_bool_eq( size_t x,
- size_t y )
+unsigned mbedtls_ct_size_bool_eq(size_t x,
+ size_t y)
{
/* diff = 0 if x == y, non-zero otherwise */
const size_t diff = x ^ y;
@@ -188,16 +240,16 @@
#endif
/* diff_msb's most significant bit is equal to x != y */
- const size_t diff_msb = ( diff | (size_t) -diff );
+ const size_t diff_msb = (diff | (size_t) -diff);
#if defined(_MSC_VER)
#pragma warning( pop )
#endif
/* diff1 = (x != y) ? 1 : 0 */
- const unsigned diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
+ const unsigned diff1 = diff_msb >> (sizeof(diff_msb) * 8 - 1);
- return( 1 ^ diff1 );
+ return 1 ^ diff1;
}
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
@@ -213,19 +265,19 @@
*
* \return 1 if \p x greater than \p y, otherwise 0.
*/
-static unsigned mbedtls_ct_size_gt( size_t x,
- size_t y )
+static unsigned mbedtls_ct_size_gt(size_t x,
+ size_t y)
{
/* Return the sign bit (1 for negative) of (y - x). */
- return( ( y - x ) >> ( sizeof( size_t ) * 8 - 1 ) );
+ return (y - x) >> (sizeof(size_t) * 8 - 1);
}
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
#if defined(MBEDTLS_BIGNUM_C)
-unsigned mbedtls_ct_mpi_uint_lt( const mbedtls_mpi_uint x,
- const mbedtls_mpi_uint y )
+unsigned mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,
+ const mbedtls_mpi_uint y)
{
mbedtls_mpi_uint ret;
mbedtls_mpi_uint cond;
@@ -233,12 +285,12 @@
/*
* Check if the most significant bits (MSB) of the operands are different.
*/
- cond = ( x ^ y );
+ cond = (x ^ y);
/*
* If the MSB are the same then the difference x-y will be negative (and
* have its MSB set to 1 during conversion to unsigned) if and only if x<y.
*/
- ret = ( x - y ) & ~cond;
+ ret = (x - y) & ~cond;
/*
* If the MSB are different, then the operand with the MSB of 1 is the
* bigger. (That is if y has MSB of 1, then x<y is true and it is false if
@@ -247,19 +299,19 @@
ret |= y & cond;
- ret = ret >> ( sizeof( mbedtls_mpi_uint ) * 8 - 1 );
+ ret = ret >> (sizeof(mbedtls_mpi_uint) * 8 - 1);
return (unsigned) ret;
}
#endif /* MBEDTLS_BIGNUM_C */
-unsigned mbedtls_ct_uint_if( unsigned condition,
- unsigned if1,
- unsigned if0 )
+unsigned mbedtls_ct_uint_if(unsigned condition,
+ unsigned if1,
+ unsigned if0)
{
- unsigned mask = mbedtls_ct_uint_mask( condition );
- return( ( mask & if1 ) | (~mask & if0 ) );
+ unsigned mask = mbedtls_ct_uint_mask(condition);
+ return (mask & if1) | (~mask & if0);
}
#if defined(MBEDTLS_BIGNUM_C)
@@ -272,15 +324,15 @@
* \note if1 and if0 must be either 1 or -1, otherwise the result
* is undefined.
*
- * \param condition Condition to test.
+ * \param condition Condition to test; must be either 0 or 1.
* \param if1 The first sign; must be either +1 or -1.
* \param if0 The second sign; must be either +1 or -1.
*
* \return \c if1 if \p condition is nonzero, otherwise \c if0.
* */
-static int mbedtls_ct_cond_select_sign( unsigned char condition,
- int if1,
- int if0 )
+static int mbedtls_ct_cond_select_sign(unsigned char condition,
+ int if1,
+ int if0)
{
/* In order to avoid questions about what we can reasonably assume about
* the representations of signed integers, move everything to unsigned
@@ -292,16 +344,16 @@
const unsigned mask = condition << 1;
/* select uif1 or uif0 */
- unsigned ur = ( uif0 & ~mask ) | ( uif1 & mask );
+ unsigned ur = (uif0 & ~mask) | (uif1 & mask);
/* ur is now 0 or 2, convert back to -1 or +1 */
- return( (int) ur - 1 );
+ return (int) ur - 1;
}
-void mbedtls_ct_mpi_uint_cond_assign( size_t n,
- mbedtls_mpi_uint *dest,
- const mbedtls_mpi_uint *src,
- unsigned char condition )
+void mbedtls_ct_mpi_uint_cond_assign(size_t n,
+ mbedtls_mpi_uint *dest,
+ const mbedtls_mpi_uint *src,
+ unsigned char condition)
{
size_t i;
@@ -319,43 +371,44 @@
#pragma warning( pop )
#endif
- for( i = 0; i < n; i++ )
- dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
+ for (i = 0; i < n; i++) {
+ dest[i] = (src[i] & mask) | (dest[i] & ~mask);
+ }
}
#endif /* MBEDTLS_BIGNUM_C */
#if defined(MBEDTLS_BASE64_C)
-unsigned char mbedtls_ct_base64_enc_char( unsigned char value )
+unsigned char mbedtls_ct_base64_enc_char(unsigned char value)
{
unsigned char digit = 0;
/* For each range of values, if value is in that range, mask digit with
* the corresponding value. Since value can only be in a single range,
* only at most one masking will change digit. */
- digit |= mbedtls_ct_uchar_mask_of_range( 0, 25, value ) & ( 'A' + value );
- digit |= mbedtls_ct_uchar_mask_of_range( 26, 51, value ) & ( 'a' + value - 26 );
- digit |= mbedtls_ct_uchar_mask_of_range( 52, 61, value ) & ( '0' + value - 52 );
- digit |= mbedtls_ct_uchar_mask_of_range( 62, 62, value ) & '+';
- digit |= mbedtls_ct_uchar_mask_of_range( 63, 63, value ) & '/';
- return( digit );
+ digit |= mbedtls_ct_uchar_mask_of_range(0, 25, value) & ('A' + value);
+ digit |= mbedtls_ct_uchar_mask_of_range(26, 51, value) & ('a' + value - 26);
+ digit |= mbedtls_ct_uchar_mask_of_range(52, 61, value) & ('0' + value - 52);
+ digit |= mbedtls_ct_uchar_mask_of_range(62, 62, value) & '+';
+ digit |= mbedtls_ct_uchar_mask_of_range(63, 63, value) & '/';
+ return digit;
}
-signed char mbedtls_ct_base64_dec_value( unsigned char c )
+signed char mbedtls_ct_base64_dec_value(unsigned char c)
{
unsigned char val = 0;
/* For each range of digits, if c is in that range, mask val with
* the corresponding value. Since c can only be in a single range,
* only at most one masking will change val. Set val to one plus
* the desired value so that it stays 0 if c is in none of the ranges. */
- val |= mbedtls_ct_uchar_mask_of_range( 'A', 'Z', c ) & ( c - 'A' + 0 + 1 );
- val |= mbedtls_ct_uchar_mask_of_range( 'a', 'z', c ) & ( c - 'a' + 26 + 1 );
- val |= mbedtls_ct_uchar_mask_of_range( '0', '9', c ) & ( c - '0' + 52 + 1 );
- val |= mbedtls_ct_uchar_mask_of_range( '+', '+', c ) & ( c - '+' + 62 + 1 );
- val |= mbedtls_ct_uchar_mask_of_range( '/', '/', c ) & ( c - '/' + 63 + 1 );
+ val |= mbedtls_ct_uchar_mask_of_range('A', 'Z', c) & (c - 'A' + 0 + 1);
+ val |= mbedtls_ct_uchar_mask_of_range('a', 'z', c) & (c - 'a' + 26 + 1);
+ val |= mbedtls_ct_uchar_mask_of_range('0', '9', c) & (c - '0' + 52 + 1);
+ val |= mbedtls_ct_uchar_mask_of_range('+', '+', c) & (c - '+' + 62 + 1);
+ val |= mbedtls_ct_uchar_mask_of_range('/', '/', c) & (c - '/' + 63 + 1);
/* At this point, val is 0 if c is an invalid digit and v+1 if c is
* a digit with the value v. */
- return( val - 1 );
+ return val - 1;
}
#endif /* MBEDTLS_BASE64_C */
@@ -378,73 +431,214 @@
* \param total Total size of the buffer.
* \param offset Offset from which to copy \p total - \p offset bytes.
*/
-static void mbedtls_ct_mem_move_to_left( void *start,
- size_t total,
- size_t offset )
+static void mbedtls_ct_mem_move_to_left(void *start,
+ size_t total,
+ size_t offset)
{
volatile unsigned char *buf = start;
size_t i, n;
- if( total == 0 )
+ if (total == 0) {
return;
- for( i = 0; i < total; i++ )
- {
- unsigned no_op = mbedtls_ct_size_gt( total - offset, i );
+ }
+ for (i = 0; i < total; i++) {
+ unsigned no_op = mbedtls_ct_size_gt(total - offset, i);
/* The first `total - offset` passes are a no-op. The last
* `offset` passes shift the data one byte to the left and
* zero out the last byte. */
- for( n = 0; n < total - 1; n++ )
- {
+ for (n = 0; n < total - 1; n++) {
unsigned char current = buf[n];
unsigned char next = buf[n+1];
- buf[n] = mbedtls_ct_uint_if( no_op, current, next );
+ buf[n] = mbedtls_ct_uint_if(no_op, current, next);
}
- buf[total-1] = mbedtls_ct_uint_if( no_op, buf[total-1], 0 );
+ buf[total-1] = mbedtls_ct_uint_if(no_op, buf[total-1], 0);
}
}
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
-#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
+#if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
-void mbedtls_ct_memcpy_if_eq( unsigned char *dest,
- const unsigned char *src,
- size_t len,
- size_t c1,
- size_t c2 )
+void mbedtls_ct_memcpy_if_eq(unsigned char *dest,
+ const unsigned char *src,
+ size_t len,
+ size_t c1,
+ size_t c2)
{
/* mask = c1 == c2 ? 0xff : 0x00 */
- const size_t equal = mbedtls_ct_size_bool_eq( c1, c2 );
- const unsigned char mask = (unsigned char) mbedtls_ct_size_mask( equal );
+ const size_t equal = mbedtls_ct_size_bool_eq(c1, c2);
/* dest[i] = c1 == c2 ? src[i] : dest[i] */
- for( size_t i = 0; i < len; i++ )
- dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
-}
+ size_t i = 0;
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
+ const uint32_t mask32 = (uint32_t) mbedtls_ct_size_mask(equal);
+ const unsigned char mask = (unsigned char) mask32 & 0xff;
-void mbedtls_ct_memcpy_offset( unsigned char *dest,
- const unsigned char *src,
- size_t offset,
- size_t offset_min,
- size_t offset_max,
- size_t len )
-{
- size_t offsetval;
-
- for( offsetval = offset_min; offsetval <= offset_max; offsetval++ )
- {
- mbedtls_ct_memcpy_if_eq( dest, src + offsetval, len,
- offsetval, offset );
+ for (; (i + 4) <= len; i += 4) {
+ uint32_t a = mbedtls_get_unaligned_uint32(src + i) & mask32;
+ uint32_t b = mbedtls_get_unaligned_uint32(dest + i) & ~mask32;
+ mbedtls_put_unaligned_uint32(dest + i, a | b);
+ }
+#else
+ const unsigned char mask = (unsigned char) mbedtls_ct_size_mask(equal);
+#endif /* MBEDTLS_EFFICIENT_UNALIGNED_ACCESS */
+ for (; i < len; i++) {
+ dest[i] = (src[i] & mask) | (dest[i] & ~mask);
}
}
-int mbedtls_ct_hmac( mbedtls_md_context_t *ctx,
- const unsigned char *add_data,
- size_t add_data_len,
- const unsigned char *data,
- size_t data_len_secret,
- size_t min_data_len,
- size_t max_data_len,
- unsigned char *output )
+void mbedtls_ct_memcpy_offset(unsigned char *dest,
+ const unsigned char *src,
+ size_t offset,
+ size_t offset_min,
+ size_t offset_max,
+ size_t len)
+{
+ size_t offsetval;
+
+ for (offsetval = offset_min; offsetval <= offset_max; offsetval++) {
+ mbedtls_ct_memcpy_if_eq(dest, src + offsetval, len,
+ offsetval, offset);
+ }
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+
+#if defined(PSA_WANT_ALG_SHA_384)
+#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_384)
+#elif defined(PSA_WANT_ALG_SHA_256)
+#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_256)
+#else /* See check_config.h */
+#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_1)
+#endif
+
+int mbedtls_ct_hmac(mbedtls_svc_key_id_t key,
+ psa_algorithm_t mac_alg,
+ const unsigned char *add_data,
+ size_t add_data_len,
+ const unsigned char *data,
+ size_t data_len_secret,
+ size_t min_data_len,
+ size_t max_data_len,
+ unsigned char *output)
+{
+ /*
+ * This function breaks the HMAC abstraction and uses psa_hash_clone()
+ * extension in order to get constant-flow behaviour.
+ *
+ * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
+ * concatenation, and okey/ikey are the XOR of the key with some fixed bit
+ * patterns (see RFC 2104, sec. 2).
+ *
+ * We'll first compute ikey/okey, then inner_hash = HASH(ikey + msg) by
+ * hashing up to minlen, then cloning the context, and for each byte up
+ * to maxlen finishing up the hash computation, keeping only the
+ * correct result.
+ *
+ * Then we only need to compute HASH(okey + inner_hash) and we're done.
+ */
+ psa_algorithm_t hash_alg = PSA_ALG_HMAC_GET_HASH(mac_alg);
+ const size_t block_size = PSA_HASH_BLOCK_LENGTH(hash_alg);
+ unsigned char key_buf[MAX_HASH_BLOCK_LENGTH];
+ const size_t hash_size = PSA_HASH_LENGTH(hash_alg);
+ psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
+ size_t hash_length;
+
+ unsigned char aux_out[PSA_HASH_MAX_SIZE];
+ psa_hash_operation_t aux_operation = PSA_HASH_OPERATION_INIT;
+ size_t offset;
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+ size_t mac_key_length;
+ size_t i;
+
+#define PSA_CHK(func_call) \
+ do { \
+ status = (func_call); \
+ if (status != PSA_SUCCESS) \
+ goto cleanup; \
+ } while (0)
+
+ /* Export MAC key
+ * We assume key length is always exactly the output size
+ * which is never more than the block size, thus we use block_size
+ * as the key buffer size.
+ */
+ PSA_CHK(psa_export_key(key, key_buf, block_size, &mac_key_length));
+
+ /* Calculate ikey */
+ for (i = 0; i < mac_key_length; i++) {
+ key_buf[i] = (unsigned char) (key_buf[i] ^ 0x36);
+ }
+ for (; i < block_size; ++i) {
+ key_buf[i] = 0x36;
+ }
+
+ PSA_CHK(psa_hash_setup(&operation, hash_alg));
+
+ /* Now compute inner_hash = HASH(ikey + msg) */
+ PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
+ PSA_CHK(psa_hash_update(&operation, add_data, add_data_len));
+ PSA_CHK(psa_hash_update(&operation, data, min_data_len));
+
+ /* Fill the hash buffer in advance with something that is
+ * not a valid hash (barring an attack on the hash and
+ * deliberately-crafted input), in case the caller doesn't
+ * check the return status properly. */
+ memset(output, '!', hash_size);
+
+ /* For each possible length, compute the hash up to that point */
+ for (offset = min_data_len; offset <= max_data_len; offset++) {
+ PSA_CHK(psa_hash_clone(&operation, &aux_operation));
+ PSA_CHK(psa_hash_finish(&aux_operation, aux_out,
+ PSA_HASH_MAX_SIZE, &hash_length));
+ /* Keep only the correct inner_hash in the output buffer */
+ mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
+ offset, data_len_secret);
+
+ if (offset < max_data_len) {
+ PSA_CHK(psa_hash_update(&operation, data + offset, 1));
+ }
+ }
+
+ /* Abort current operation to prepare for final operation */
+ PSA_CHK(psa_hash_abort(&operation));
+
+ /* Calculate okey */
+ for (i = 0; i < mac_key_length; i++) {
+ key_buf[i] = (unsigned char) ((key_buf[i] ^ 0x36) ^ 0x5C);
+ }
+ for (; i < block_size; ++i) {
+ key_buf[i] = 0x5C;
+ }
+
+ /* Now compute HASH(okey + inner_hash) */
+ PSA_CHK(psa_hash_setup(&operation, hash_alg));
+ PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
+ PSA_CHK(psa_hash_update(&operation, output, hash_size));
+ PSA_CHK(psa_hash_finish(&operation, output, hash_size, &hash_length));
+
+#undef PSA_CHK
+
+cleanup:
+ mbedtls_platform_zeroize(key_buf, MAX_HASH_BLOCK_LENGTH);
+ mbedtls_platform_zeroize(aux_out, PSA_HASH_MAX_SIZE);
+
+ psa_hash_abort(&operation);
+ psa_hash_abort(&aux_operation);
+ return PSA_TO_MBEDTLS_ERR(status);
+}
+
+#undef MAX_HASH_BLOCK_LENGTH
+
+#else
+int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,
+ const unsigned char *add_data,
+ size_t add_data_len,
+ const unsigned char *data,
+ size_t data_len_secret,
+ size_t min_data_len,
+ size_t max_data_len,
+ unsigned char *output)
{
/*
* This function breaks the HMAC abstraction and uses the md_clone()
@@ -460,79 +654,80 @@
*
* Then we only need to compute HASH(okey + inner_hash) and we're done.
*/
- const mbedtls_md_type_t md_alg = mbedtls_md_get_type( ctx->md_info );
- /* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5,
+ const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info);
+ /* TLS 1.2 only supports SHA-384, SHA-256, SHA-1, MD-5,
* all of which have the same block size except SHA-384. */
const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
const unsigned char * const ikey = ctx->hmac_ctx;
const unsigned char * const okey = ikey + block_size;
- const size_t hash_size = mbedtls_md_get_size( ctx->md_info );
+ const size_t hash_size = mbedtls_md_get_size(ctx->md_info);
unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
mbedtls_md_context_t aux;
size_t offset;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_md_init( &aux );
+ mbedtls_md_init(&aux);
-#define MD_CHK( func_call ) \
+#define MD_CHK(func_call) \
do { \
ret = (func_call); \
- if( ret != 0 ) \
- goto cleanup; \
- } while( 0 )
+ if (ret != 0) \
+ goto cleanup; \
+ } while (0)
- MD_CHK( mbedtls_md_setup( &aux, ctx->md_info, 0 ) );
+ MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0));
/* After hmac_start() of hmac_reset(), ikey has already been hashed,
* so we can start directly with the message */
- MD_CHK( mbedtls_md_update( ctx, add_data, add_data_len ) );
- MD_CHK( mbedtls_md_update( ctx, data, min_data_len ) );
+ MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len));
+ MD_CHK(mbedtls_md_update(ctx, data, min_data_len));
/* Fill the hash buffer in advance with something that is
* not a valid hash (barring an attack on the hash and
* deliberately-crafted input), in case the caller doesn't
* check the return status properly. */
- memset( output, '!', hash_size );
+ memset(output, '!', hash_size);
/* For each possible length, compute the hash up to that point */
- for( offset = min_data_len; offset <= max_data_len; offset++ )
- {
- MD_CHK( mbedtls_md_clone( &aux, ctx ) );
- MD_CHK( mbedtls_md_finish( &aux, aux_out ) );
+ for (offset = min_data_len; offset <= max_data_len; offset++) {
+ MD_CHK(mbedtls_md_clone(&aux, ctx));
+ MD_CHK(mbedtls_md_finish(&aux, aux_out));
/* Keep only the correct inner_hash in the output buffer */
- mbedtls_ct_memcpy_if_eq( output, aux_out, hash_size,
- offset, data_len_secret );
+ mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
+ offset, data_len_secret);
- if( offset < max_data_len )
- MD_CHK( mbedtls_md_update( ctx, data + offset, 1 ) );
+ if (offset < max_data_len) {
+ MD_CHK(mbedtls_md_update(ctx, data + offset, 1));
+ }
}
/* The context needs to finish() before it starts() again */
- MD_CHK( mbedtls_md_finish( ctx, aux_out ) );
+ MD_CHK(mbedtls_md_finish(ctx, aux_out));
/* Now compute HASH(okey + inner_hash) */
- MD_CHK( mbedtls_md_starts( ctx ) );
- MD_CHK( mbedtls_md_update( ctx, okey, block_size ) );
- MD_CHK( mbedtls_md_update( ctx, output, hash_size ) );
- MD_CHK( mbedtls_md_finish( ctx, output ) );
+ MD_CHK(mbedtls_md_starts(ctx));
+ MD_CHK(mbedtls_md_update(ctx, okey, block_size));
+ MD_CHK(mbedtls_md_update(ctx, output, hash_size));
+ MD_CHK(mbedtls_md_finish(ctx, output));
/* Done, get ready for next time */
- MD_CHK( mbedtls_md_hmac_reset( ctx ) );
+ MD_CHK(mbedtls_md_hmac_reset(ctx));
#undef MD_CHK
cleanup:
- mbedtls_md_free( &aux );
- return( ret );
+ mbedtls_md_free(&aux);
+ return ret;
}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
-#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
+#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
#if defined(MBEDTLS_BIGNUM_C)
-#define MPI_VALIDATE_RET( cond ) \
- MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
+#define MPI_VALIDATE_RET(cond) \
+ MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
/*
* Conditionally assign X = Y, without leaking information
@@ -546,30 +741,29 @@
*/
__declspec(noinline)
#endif
-int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X,
- const mbedtls_mpi *Y,
- unsigned char assign )
+int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
+ const mbedtls_mpi *Y,
+ unsigned char assign)
{
int ret = 0;
- size_t i;
- mbedtls_mpi_uint limb_mask;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( Y != NULL );
+ MPI_VALIDATE_RET(X != NULL);
+ MPI_VALIDATE_RET(Y != NULL);
/* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
- limb_mask = mbedtls_ct_mpi_uint_mask( assign );;
+ mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask(assign);
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
- X->s = mbedtls_ct_cond_select_sign( assign, Y->s, X->s );
+ X->s = mbedtls_ct_cond_select_sign(assign, Y->s, X->s);
- mbedtls_ct_mpi_uint_cond_assign( Y->n, X->p, Y->p, assign );
+ mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, assign);
- for( i = Y->n; i < X->n; i++ )
+ for (size_t i = Y->n; i < X->n; i++) {
X->p[i] &= ~limb_mask;
+ }
cleanup:
- return( ret );
+ return ret;
}
/*
@@ -578,73 +772,107 @@
* Here it is not ok to simply swap the pointers, which would lead to
* different memory access patterns when X and Y are used afterwards.
*/
-int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X,
- mbedtls_mpi *Y,
- unsigned char swap )
+int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
+ mbedtls_mpi *Y,
+ unsigned char swap)
{
- int ret, s;
- size_t i;
- mbedtls_mpi_uint limb_mask;
- mbedtls_mpi_uint tmp;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( Y != NULL );
+ int ret = 0;
+ int s;
+ MPI_VALIDATE_RET(X != NULL);
+ MPI_VALIDATE_RET(Y != NULL);
- if( X == Y )
- return( 0 );
-
- /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
- limb_mask = mbedtls_ct_mpi_uint_mask( swap );
-
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
-
- s = X->s;
- X->s = mbedtls_ct_cond_select_sign( swap, Y->s, X->s );
- Y->s = mbedtls_ct_cond_select_sign( swap, s, Y->s );
-
-
- for( i = 0; i < X->n; i++ )
- {
- tmp = X->p[i];
- X->p[i] = ( X->p[i] & ~limb_mask ) | ( Y->p[i] & limb_mask );
- Y->p[i] = ( Y->p[i] & ~limb_mask ) | ( tmp & limb_mask );
+ if (X == Y) {
+ return 0;
}
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
+
+ s = X->s;
+ X->s = mbedtls_ct_cond_select_sign(swap, Y->s, X->s);
+ Y->s = mbedtls_ct_cond_select_sign(swap, s, Y->s);
+
+ mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, swap);
+
cleanup:
- return( ret );
+ return ret;
+}
+
+/*
+ * Compare unsigned values in constant time
+ */
+unsigned mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs)
+{
+ unsigned ret, cond, done;
+
+ /* The value of any of these variables is either 0 or 1 for the rest of
+ * their scope. */
+ ret = cond = done = 0;
+
+ for (size_t i = limbs; i > 0; i--) {
+ /*
+ * If B[i - 1] < A[i - 1] then A < B is false and the result must
+ * remain 0.
+ *
+ * Again even if we can make a decision, we just mark the result and
+ * the fact that we are done and continue looping.
+ */
+ cond = mbedtls_ct_mpi_uint_lt(B[i - 1], A[i - 1]);
+ done |= cond;
+
+ /*
+ * If A[i - 1] < B[i - 1] then A < B is true.
+ *
+ * Again even if we can make a decision, we just mark the result and
+ * the fact that we are done and continue looping.
+ */
+ cond = mbedtls_ct_mpi_uint_lt(A[i - 1], B[i - 1]);
+ ret |= cond & (1 - done);
+ done |= cond;
+ }
+
+ /*
+ * If all the limbs were equal, then the numbers are equal, A < B is false
+ * and leaving the result 0 is correct.
+ */
+
+ return ret;
}
/*
* Compare signed values in constant time
*/
-int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X,
- const mbedtls_mpi *Y,
- unsigned *ret )
+int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
+ const mbedtls_mpi *Y,
+ unsigned *ret)
{
size_t i;
/* The value of any of these variables is either 0 or 1 at all times. */
unsigned cond, done, X_is_negative, Y_is_negative;
- MPI_VALIDATE_RET( X != NULL );
- MPI_VALIDATE_RET( Y != NULL );
- MPI_VALIDATE_RET( ret != NULL );
+ MPI_VALIDATE_RET(X != NULL);
+ MPI_VALIDATE_RET(Y != NULL);
+ MPI_VALIDATE_RET(ret != NULL);
- if( X->n != Y->n )
+ if (X->n != Y->n) {
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
/*
* Set sign_N to 1 if N >= 0, 0 if N < 0.
* We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
*/
- X_is_negative = ( X->s & 2 ) >> 1;
- Y_is_negative = ( Y->s & 2 ) >> 1;
+ X_is_negative = (X->s & 2) >> 1;
+ Y_is_negative = (Y->s & 2) >> 1;
/*
* If the signs are different, then the positive operand is the bigger.
* That is if X is negative (X_is_negative == 1), then X < Y is true and it
* is false if X is positive (X_is_negative == 0).
*/
- cond = ( X_is_negative ^ Y_is_negative );
+ cond = (X_is_negative ^ Y_is_negative);
*ret = cond & X_is_negative;
/*
@@ -653,8 +881,7 @@
*/
done = cond;
- for( i = X->n; i > 0; i-- )
- {
+ for (i = X->n; i > 0; i--) {
/*
* If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
* X and Y are negative.
@@ -662,8 +889,8 @@
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
- cond = mbedtls_ct_mpi_uint_lt( Y->p[i - 1], X->p[i - 1] );
- *ret |= cond & ( 1 - done ) & X_is_negative;
+ cond = mbedtls_ct_mpi_uint_lt(Y->p[i - 1], X->p[i - 1]);
+ *ret |= cond & (1 - done) & X_is_negative;
done |= cond;
/*
@@ -673,24 +900,23 @@
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
- cond = mbedtls_ct_mpi_uint_lt( X->p[i - 1], Y->p[i - 1] );
- *ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
+ cond = mbedtls_ct_mpi_uint_lt(X->p[i - 1], Y->p[i - 1]);
+ *ret |= cond & (1 - done) & (1 - X_is_negative);
done |= cond;
}
- return( 0 );
+ return 0;
}
#endif /* MBEDTLS_BIGNUM_C */
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
-int mbedtls_ct_rsaes_pkcs1_v15_unpadding( int mode,
- unsigned char *input,
- size_t ilen,
- unsigned char *output,
- size_t output_max_len,
- size_t *olen )
+int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input,
+ size_t ilen,
+ unsigned char *output,
+ size_t output_max_len,
+ size_t *olen)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t i, plaintext_max_size;
@@ -711,49 +937,31 @@
size_t plaintext_size = 0;
unsigned output_too_large;
- plaintext_max_size = ( output_max_len > ilen - 11 ) ? ilen - 11
+ plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
: output_max_len;
/* Check and get padding length in constant time and constant
* memory trace. The first byte must be 0. */
bad |= input[0];
- if( mode == MBEDTLS_RSA_PRIVATE )
- {
- /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
- * where PS must be at least 8 nonzero bytes. */
- bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
- /* Read the whole buffer. Set pad_done to nonzero if we find
- * the 0x00 byte and remember the padding length in pad_count. */
- for( i = 2; i < ilen; i++ )
- {
- pad_done |= ((input[i] | (unsigned char)-input[i]) >> 7) ^ 1;
- pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
- }
- }
- else
- {
- /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
- * where PS must be at least 8 bytes with the value 0xFF. */
- bad |= input[1] ^ MBEDTLS_RSA_SIGN;
+ /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
+ * where PS must be at least 8 nonzero bytes. */
+ bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
- /* Read the whole buffer. Set pad_done to nonzero if we find
- * the 0x00 byte and remember the padding length in pad_count.
- * If there's a non-0xff byte in the padding, the padding is bad. */
- for( i = 2; i < ilen; i++ )
- {
- pad_done |= mbedtls_ct_uint_if( input[i], 0, 1 );
- pad_count += mbedtls_ct_uint_if( pad_done, 0, 1 );
- bad |= mbedtls_ct_uint_if( pad_done, 0, input[i] ^ 0xFF );
- }
+ /* Read the whole buffer. Set pad_done to nonzero if we find
+ * the 0x00 byte and remember the padding length in pad_count. */
+ for (i = 2; i < ilen; i++) {
+ pad_done |= ((input[i] | (unsigned char) -input[i]) >> 7) ^ 1;
+ pad_count += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1;
}
+
/* If pad_done is still zero, there's no data, only unfinished padding. */
- bad |= mbedtls_ct_uint_if( pad_done, 0, 1 );
+ bad |= mbedtls_ct_uint_if(pad_done, 0, 1);
/* There must be at least 8 bytes of padding. */
- bad |= mbedtls_ct_size_gt( 8, pad_count );
+ bad |= mbedtls_ct_size_gt(8, pad_count);
/* If the padding is valid, set plaintext_size to the number of
* remaining bytes after stripping the padding. If the padding
@@ -763,24 +971,24 @@
* validity through timing. RSA keys are small enough that all the
* size_t values involved fit in unsigned int. */
plaintext_size = mbedtls_ct_uint_if(
- bad, (unsigned) plaintext_max_size,
- (unsigned) ( ilen - pad_count - 3 ) );
+ bad, (unsigned) plaintext_max_size,
+ (unsigned) (ilen - pad_count - 3));
/* Set output_too_large to 0 if the plaintext fits in the output
* buffer and to 1 otherwise. */
- output_too_large = mbedtls_ct_size_gt( plaintext_size,
- plaintext_max_size );
+ output_too_large = mbedtls_ct_size_gt(plaintext_size,
+ plaintext_max_size);
/* Set ret without branches to avoid timing attacks. Return:
* - INVALID_PADDING if the padding is bad (bad != 0).
* - OUTPUT_TOO_LARGE if the padding is good but the decrypted
* plaintext does not fit in the output buffer.
* - 0 if the padding is correct. */
- ret = - (int) mbedtls_ct_uint_if(
- bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
- mbedtls_ct_uint_if( output_too_large,
- - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
- 0 ) );
+ ret = -(int) mbedtls_ct_uint_if(
+ bad, -MBEDTLS_ERR_RSA_INVALID_PADDING,
+ mbedtls_ct_uint_if(output_too_large,
+ -MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
+ 0));
/* If the padding is bad or the plaintext is too large, zero the
* data that we're about to copy to the output buffer.
@@ -788,17 +996,18 @@
* from the same buffer whether the padding is good or not to
* avoid leaking the padding validity through overall timing or
* through memory or cache access patterns. */
- bad = mbedtls_ct_uint_mask( bad | output_too_large );
- for( i = 11; i < ilen; i++ )
+ bad = mbedtls_ct_uint_mask(bad | output_too_large);
+ for (i = 11; i < ilen; i++) {
input[i] &= ~bad;
+ }
/* If the plaintext is too large, truncate it to the buffer size.
* Copy anyway to avoid revealing the length through timing, because
* revealing the length is as bad as revealing the padding validity
* for a Bleichenbacher attack. */
- plaintext_size = mbedtls_ct_uint_if( output_too_large,
- (unsigned) plaintext_max_size,
- (unsigned) plaintext_size );
+ plaintext_size = mbedtls_ct_uint_if(output_too_large,
+ (unsigned) plaintext_max_size,
+ (unsigned) plaintext_size);
/* Move the plaintext to the leftmost position where it can start in
* the working buffer, i.e. make it start plaintext_max_size from
@@ -806,9 +1015,9 @@
* does not depend on the plaintext size. After this move, the
* starting location of the plaintext is no longer sensitive
* information. */
- mbedtls_ct_mem_move_to_left( input + ilen - plaintext_max_size,
- plaintext_max_size,
- plaintext_max_size - plaintext_size );
+ mbedtls_ct_mem_move_to_left(input + ilen - plaintext_max_size,
+ plaintext_max_size,
+ plaintext_max_size - plaintext_size);
/* Finally copy the decrypted plaintext plus trailing zeros into the output
* buffer. If output_max_len is 0, then output may be an invalid pointer
@@ -817,8 +1026,9 @@
* user-provided output buffer), which is independent from plaintext
* length, validity of padding, success of the decryption, and other
* secrets. */
- if( output_max_len != 0 )
- memcpy( output, input + ilen - plaintext_max_size, plaintext_max_size );
+ if (output_max_len != 0) {
+ memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
+ }
/* Report the amount of data we copied to the output buffer. In case
* of errors (bad padding or output too large), the value of *olen
@@ -826,7 +1036,7 @@
* to the good case limits the risks of leaking the padding validity. */
*olen = plaintext_size;
- return( ret );
+ return ret;
}
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */