aboutsummaryrefslogtreecommitdiff
path: root/src/manifest.c
blob: 003a1b92128df2be9c0064cb67dbd01ce745c2ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/*
 * Copyright 2019 The Hafnium Authors.
 *
 * Use of this source code is governed by a BSD-style
 * license that can be found in the LICENSE file or at
 * https://opensource.org/licenses/BSD-3-Clause.
 */

#include "hf/manifest.h"

#include "hf/addr.h"
#include "hf/check.h"
#include "hf/dlog.h"
#include "hf/fdt.h"
#include "hf/static_assert.h"
#include "hf/std.h"

#define TRY(expr)                                            \
	do {                                                 \
		enum manifest_return_code ret_code = (expr); \
		if (ret_code != MANIFEST_SUCCESS) {          \
			return ret_code;                     \
		}                                            \
	} while (0)

#define VM_ID_MAX (HF_VM_ID_OFFSET + MAX_VMS - 1)
#define VM_ID_MAX_DIGITS (5)
#define VM_NAME_EXTRA_CHARS (3) /* "vm" + number + '\0' */
#define VM_NAME_MAX_SIZE (VM_ID_MAX_DIGITS + VM_NAME_EXTRA_CHARS)
static_assert(VM_NAME_MAX_SIZE <= STRING_MAX_SIZE,
	      "VM name does not fit into a struct string.");
static_assert(VM_ID_MAX <= 99999, "Insufficient VM_NAME_BUF_SIZE");
static_assert(HF_TEE_VM_ID > VM_ID_MAX,
	      "TrustZone VM ID clashes with normal VM range.");

static inline size_t count_digits(ffa_vm_id_t vm_id)
{
	size_t digits = 0;

	do {
		digits++;
		vm_id /= 10;
	} while (vm_id);
	return digits;
}

/**
 * Generates a string with the two letters "vm" followed by an integer.
 * Assumes `buf` is of size VM_NAME_BUF_SIZE.
 */
static void generate_vm_node_name(struct string *str, ffa_vm_id_t vm_id)
{
	static const char *digits = "0123456789";
	size_t vm_id_digits = count_digits(vm_id);
	char *base = str->data;
	char *ptr = base + (VM_NAME_EXTRA_CHARS + vm_id_digits);

	CHECK(vm_id_digits <= VM_ID_MAX_DIGITS);
	*(--ptr) = '\0';
	do {
		*(--ptr) = digits[vm_id % 10];
		vm_id /= 10;
	} while (vm_id);
	*(--ptr) = 'm';
	*(--ptr) = 'v';
	CHECK(ptr == base);
}

/**
 * Read a boolean property: true if present; false if not. If present, the value
 * of the property must be empty else it is considered malformed.
 */
static enum manifest_return_code read_bool(const struct fdt_node *node,
					   const char *property, bool *out)
{
	struct memiter data;
	bool present = fdt_read_property(node, property, &data);

	if (present && memiter_size(&data) != 0) {
		return MANIFEST_ERROR_MALFORMED_BOOLEAN;
	}

	*out = present;
	return MANIFEST_SUCCESS;
}

static enum manifest_return_code read_string(const struct fdt_node *node,
					     const char *property,
					     struct string *out)
{
	struct memiter data;

	if (!fdt_read_property(node, property, &data)) {
		return MANIFEST_ERROR_PROPERTY_NOT_FOUND;
	}

	switch (string_init(out, &data)) {
	case STRING_SUCCESS:
		return MANIFEST_SUCCESS;
	case STRING_ERROR_INVALID_INPUT:
		return MANIFEST_ERROR_MALFORMED_STRING;
	case STRING_ERROR_TOO_LONG:
		return MANIFEST_ERROR_STRING_TOO_LONG;
	}
}

static enum manifest_return_code read_optional_string(
	const struct fdt_node *node, const char *property, struct string *out)
{
	enum manifest_return_code ret;

	ret = read_string(node, property, out);
	if (ret == MANIFEST_ERROR_PROPERTY_NOT_FOUND) {
		string_init_empty(out);
		ret = MANIFEST_SUCCESS;
	}
	return ret;
}

static enum manifest_return_code read_uint64(const struct fdt_node *node,
					     const char *property,
					     uint64_t *out)
{
	struct memiter data;

	if (!fdt_read_property(node, property, &data)) {
		return MANIFEST_ERROR_PROPERTY_NOT_FOUND;
	}

	if (!fdt_parse_number(&data, memiter_size(&data), out)) {
		return MANIFEST_ERROR_MALFORMED_INTEGER;
	}

	return MANIFEST_SUCCESS;
}

static enum manifest_return_code read_optional_uint64(
	const struct fdt_node *node, const char *property,
	uint64_t default_value, uint64_t *out)
{
	enum manifest_return_code ret;

	ret = read_uint64(node, property, out);
	if (ret == MANIFEST_ERROR_PROPERTY_NOT_FOUND) {
		*out = default_value;
		return MANIFEST_SUCCESS;
	}
	return ret;
}

static enum manifest_return_code read_uint32(const struct fdt_node *node,
					     const char *property,
					     uint32_t *out)
{
	uint64_t value;

	TRY(read_uint64(node, property, &value));

	if (value > UINT32_MAX) {
		return MANIFEST_ERROR_INTEGER_OVERFLOW;
	}

	*out = (uint32_t)value;
	return MANIFEST_SUCCESS;
}

static enum manifest_return_code read_uint16(const struct fdt_node *node,
					     const char *property,
					     uint16_t *out)
{
	uint64_t value;

	TRY(read_uint64(node, property, &value));

	if (value > UINT16_MAX) {
		return MANIFEST_ERROR_INTEGER_OVERFLOW;
	}

	*out = (uint16_t)value;
	return MANIFEST_SUCCESS;
}

static enum manifest_return_code read_uint8(const struct fdt_node *node,
					    const char *property, uint8_t *out)
{
	uint64_t value;

	TRY(read_uint64(node, property, &value));

	if (value > UINT8_MAX) {
		return MANIFEST_ERROR_INTEGER_OVERFLOW;
	}

	*out = (uint8_t)value;
	return MANIFEST_SUCCESS;
}

struct uint32list_iter {
	struct memiter mem_it;
};

static enum manifest_return_code read_optional_uint32list(
	const struct fdt_node *node, const char *property,
	struct uint32list_iter *out)
{
	struct memiter data;

	if (!fdt_read_property(node, property, &data)) {
		memiter_init(&out->mem_it, NULL, 0);
		return MANIFEST_SUCCESS;
	}

	if ((memiter_size(&data) % sizeof(uint32_t)) != 0) {
		return MANIFEST_ERROR_MALFORMED_INTEGER_LIST;
	}

	out->mem_it = data;
	return MANIFEST_SUCCESS;
}

static bool uint32list_has_next(const struct uint32list_iter *list)
{
	return memiter_size(&list->mem_it) > 0;
}

static enum manifest_return_code uint32list_get_next(
	struct uint32list_iter *list, uint32_t *out)
{
	uint64_t num;

	CHECK(uint32list_has_next(list));
	if (!fdt_parse_number(&list->mem_it, sizeof(uint32_t), &num)) {
		return MANIFEST_ERROR_MALFORMED_INTEGER;
	}

	*out = (uint32_t)num;
	return MANIFEST_SUCCESS;
}

static enum manifest_return_code parse_vm_common(const struct fdt_node *node,
						 struct manifest_vm *vm,
						 ffa_vm_id_t vm_id)
{
	struct uint32list_iter smcs;
	size_t idx;

	TRY(read_bool(node, "is_ffa_partition", &vm->is_ffa_partition));

	TRY(read_string(node, "debug_name", &vm->debug_name));

	TRY(read_optional_uint32list(node, "smc_whitelist", &smcs));
	while (uint32list_has_next(&smcs) &&
	       vm->smc_whitelist.smc_count < MAX_SMCS) {
		idx = vm->smc_whitelist.smc_count++;
		TRY(uint32list_get_next(&smcs, &vm->smc_whitelist.smcs[idx]));
	}

	if (uint32list_has_next(&smcs)) {
		dlog_warning("%s SMC whitelist too long.\n", vm->debug_name);
	}

	TRY(read_bool(node, "smc_whitelist_permissive",
		      &vm->smc_whitelist.permissive));

	if (vm_id != HF_PRIMARY_VM_ID) {
		TRY(read_uint64(node, "mem_size", &vm->secondary.mem_size));
		TRY(read_uint16(node, "vcpu_count", &vm->secondary.vcpu_count));
		TRY(read_optional_string(node, "fdt_filename",
					 &vm->secondary.fdt_filename));
	}

	return MANIFEST_SUCCESS;
}

static enum manifest_return_code parse_vm(struct fdt_node *node,
					  struct manifest_vm *vm,
					  ffa_vm_id_t vm_id)
{
	TRY(read_optional_string(node, "kernel_filename",
				 &vm->kernel_filename));

	if (vm_id == HF_PRIMARY_VM_ID) {
		TRY(read_optional_string(node, "ramdisk_filename",
					 &vm->primary.ramdisk_filename));
		TRY(read_optional_uint64(node, "boot_address",
					 MANIFEST_INVALID_ADDRESS,
					 &vm->primary.boot_address));
	}

	return MANIFEST_SUCCESS;
}

static enum manifest_return_code parse_ffa_manifest(struct fdt *fdt,
						    struct manifest_vm *vm)
{
	unsigned int i = 0;
	struct uint32list_iter uuid;
	uint32_t uuid_word;
	struct fdt_node root;
	struct fdt_node ffa_node;
	struct string rxtx_node_name = STRING_INIT("rx_tx-info");

	if (!fdt_find_node(fdt, "/", &root)) {
		return MANIFEST_ERROR_NO_ROOT_NODE;
	}

	/* Check "compatible" property. */
	if (!fdt_is_compatible(&root, "arm,ffa-manifest-1.0")) {
		return MANIFEST_ERROR_NOT_COMPATIBLE;
	}

	TRY(read_uint32(&root, "ffa-version", &vm->sp.ffa_version));
	dlog_verbose("  SP expected FF-A version %d.%d\n",
		     vm->sp.ffa_version >> 16, vm->sp.ffa_version & 0xffff);

	TRY(read_optional_uint32list(&root, "uuid", &uuid));

	while (uint32list_has_next(&uuid) && i < 4) {
		TRY(uint32list_get_next(&uuid, &uuid_word));
		vm->sp.uuid[i] = uuid_word;
		i++;
	}
	dlog_verbose("  SP UUID %#x-%x-%x_%x\n", vm->sp.uuid[0], vm->sp.uuid[1],
		     vm->sp.uuid[2], vm->sp.uuid[3]);

	TRY(read_uint16(&root, "execution-ctx-count",
			&vm->sp.execution_ctx_count));
	dlog_verbose("  SP number of execution context %d\n",
		     vm->sp.execution_ctx_count);

	TRY(read_uint8(&root, "exception-level",
		       (uint8_t *)&vm->sp.run_time_el));
	dlog_verbose("  SP run-time EL %d\n", vm->sp.run_time_el);

	TRY(read_uint8(&root, "execution-state",
		       (uint8_t *)&vm->sp.execution_state));
	dlog_verbose("  SP execution state %d\n", vm->sp.execution_state);

	TRY(read_uint64(&root, "load-address", &vm->sp.load_addr));
	dlog_verbose("  SP load address %#x\n", vm->sp.load_addr);

	TRY(read_uint64(&root, "entrypoint-offset", &vm->sp.ep_offset));
	dlog_verbose("  SP entry point offset %#x\n", vm->sp.ep_offset);

	TRY(read_uint8(&root, "xlat-granule", (uint8_t *)&vm->sp.xlat_granule));
	dlog_verbose("  SP translation granule %d\n", vm->sp.xlat_granule);

	ffa_node = root;
	if (fdt_find_child(&ffa_node, &rxtx_node_name)) {
		if (!fdt_is_compatible(&ffa_node,
				       "arm,ffa-manifest-rx_tx-buffer")) {
			return MANIFEST_ERROR_NOT_COMPATIBLE;
		}

		TRY(read_uint64(&ffa_node, "base-address",
				&vm->sp.rxtx.base_address));

		TRY(read_uint16(&ffa_node, "pages-count",
				&vm->sp.rxtx.pages_count));

		TRY(read_uint16(&ffa_node, "attributes",
				&vm->sp.rxtx.attributes));

		vm->sp.rxtx.rxtx_found = true;
	}

	TRY(read_uint8(&root, "messaging-method",
		       (uint8_t *)&vm->sp.messaging_method));
	dlog_verbose("  SP messaging method %d\n", vm->sp.messaging_method);

	return MANIFEST_SUCCESS;
}

static enum manifest_return_code sanity_check_ffa_manifest(
	struct manifest_vm *vm)
{
	uint16_t ffa_version_major;
	uint16_t ffa_version_minor;
	enum manifest_return_code ret_code = MANIFEST_SUCCESS;
	const char *error_string = "specified in manifest is unsupported";

	/* ensure that the SPM version is compatible */
	ffa_version_major =
		(vm->sp.ffa_version & 0xffff0000) >> FFA_VERSION_MAJOR_OFFSET;
	ffa_version_minor = vm->sp.ffa_version & 0xffff;

	if (ffa_version_major != FFA_VERSION_MAJOR ||
	    ffa_version_minor > FFA_VERSION_MINOR) {
		dlog_error("FF-A partition manifest version %s: %d.%d\n",
			   error_string, ffa_version_major, ffa_version_minor);
		ret_code = MANIFEST_ERROR_NOT_COMPATIBLE;
	}

	if (vm->sp.xlat_granule != PAGE_4KB) {
		dlog_error("Translation granule %s: %d\n", error_string,
			   vm->sp.xlat_granule);
		ret_code = MANIFEST_ERROR_NOT_COMPATIBLE;
	}

	if (vm->sp.execution_state != AARCH64) {
		dlog_error("Execution state %s: %d\n", error_string,
			   vm->sp.execution_state);
		ret_code = MANIFEST_ERROR_NOT_COMPATIBLE;
	}

	if (vm->sp.run_time_el != EL1 && vm->sp.run_time_el != S_EL1) {
		dlog_error("Exception level %s: %d\n", error_string,
			   vm->sp.run_time_el);
		ret_code = MANIFEST_ERROR_NOT_COMPATIBLE;
	}

	if (vm->sp.messaging_method != INDIRECT_MESSAGING) {
		dlog_error("Messaging method %s: %x\n", error_string,
			   vm->sp.messaging_method);
		ret_code = MANIFEST_ERROR_NOT_COMPATIBLE;
	}

	return ret_code;
}

static enum manifest_return_code parse_ffa_partition_package(
	struct mm_stage1_locked stage1_locked, struct fdt_node *node,
	struct manifest_vm *vm, ffa_vm_id_t vm_id, struct mpool *ppool)
{
	enum manifest_return_code ret = MANIFEST_ERROR_NOT_COMPATIBLE;
	uintpaddr_t sp_pkg_addr;
	paddr_t sp_pkg_start;
	paddr_t sp_pkg_end;
	struct sp_pkg_header *sp_pkg;
	size_t sp_header_dtb_size;
	paddr_t sp_dtb_addr;
	struct fdt sp_fdt;

	/*
	 * This must have been hinted as being an FF-A partition,
	 * return straight with failure if this is not the case.
	 */
	if (!vm->is_ffa_partition) {
		return MANIFEST_ERROR_NOT_COMPATIBLE;
	}

	TRY(read_uint64(node, "load_address", &sp_pkg_addr));
	if (!is_aligned(sp_pkg_addr, PAGE_SIZE)) {
		return MANIFEST_ERROR_NOT_COMPATIBLE;
	}

	/* Map top of SP package as a single page to extract the header */
	sp_pkg_start = pa_init(sp_pkg_addr);
	sp_pkg_end = pa_add(sp_pkg_start, PAGE_SIZE);
	sp_pkg = mm_identity_map(stage1_locked, sp_pkg_start,
				 pa_add(sp_pkg_start, PAGE_SIZE), MM_MODE_R,
				 ppool);
	CHECK(sp_pkg != NULL);

	dlog_verbose("SP package load address %#x\n", sp_pkg_addr);

	if (sp_pkg->magic != SP_PKG_HEADER_MAGIC) {
		dlog_error("Invalid SP package magic.\n");
		goto exit_unmap;
	}

	if (sp_pkg->version != SP_PKG_HEADER_VERSION) {
		dlog_error("Invalid SP package version.\n");
		goto exit_unmap;
	}

	/* Expect SP DTB to immediately follow header */
	if (sp_pkg->pm_offset != sizeof(struct sp_pkg_header)) {
		dlog_error("Invalid SP package manifest offset.\n");
		goto exit_unmap;
	}

	sp_header_dtb_size = align_up(
		sp_pkg->pm_size + sizeof(struct sp_pkg_header), PAGE_SIZE);
	if ((vm_id != HF_PRIMARY_VM_ID) &&
	    (sp_header_dtb_size >= vm->secondary.mem_size)) {
		dlog_error("Invalid SP package header or DT size.\n");
		goto exit_unmap;
	}

	if (sp_header_dtb_size > PAGE_SIZE) {
		/* Map remainder of header + DTB  */
		sp_pkg_end = pa_add(sp_pkg_start, sp_header_dtb_size);

		sp_pkg = mm_identity_map(stage1_locked, sp_pkg_start,
					 sp_pkg_end, MM_MODE_R, ppool);
		CHECK(sp_pkg != NULL);
	}

	sp_dtb_addr = pa_add(sp_pkg_start, sp_pkg->pm_offset);
	if (!fdt_init_from_ptr(&sp_fdt, (void *)sp_dtb_addr.pa,
			       sp_pkg->pm_size)) {
		dlog_error("FDT failed validation.\n");
		goto exit_unmap;
	}

	ret = parse_ffa_manifest(&sp_fdt, vm);
	if (ret != MANIFEST_SUCCESS) {
		goto exit_unmap;
	}

	ret = sanity_check_ffa_manifest(vm);

exit_unmap:
	CHECK(mm_unmap(stage1_locked, sp_pkg_start, sp_pkg_end, ppool));

	return ret;
}

/**
 * Parse manifest from FDT.
 */
enum manifest_return_code manifest_init(struct mm_stage1_locked stage1_locked,
					struct manifest *manifest,
					struct memiter *manifest_fdt,
					struct mpool *ppool)
{
	struct string vm_name;
	struct fdt fdt;
	struct fdt_node hyp_node;
	size_t i = 0;
	bool found_primary_vm = false;

	memset_s(manifest, sizeof(*manifest), 0, sizeof(*manifest));

	if (!fdt_init_from_memiter(&fdt, manifest_fdt)) {
		return MANIFEST_ERROR_FILE_SIZE; /* TODO */
	}

	/* Find hypervisor node. */
	if (!fdt_find_node(&fdt, "/hypervisor", &hyp_node)) {
		return MANIFEST_ERROR_NO_HYPERVISOR_FDT_NODE;
	}

	/* Check "compatible" property. */
	if (!fdt_is_compatible(&hyp_node, "hafnium,hafnium")) {
		return MANIFEST_ERROR_NOT_COMPATIBLE;
	}

	TRY(read_bool(&hyp_node, "ffa_tee", &manifest->ffa_tee_enabled));

	/* Iterate over reserved VM IDs and check no such nodes exist. */
	for (i = 0; i < HF_VM_ID_OFFSET; i++) {
		ffa_vm_id_t vm_id = (ffa_vm_id_t)i;
		struct fdt_node vm_node = hyp_node;

		generate_vm_node_name(&vm_name, vm_id);
		if (fdt_find_child(&vm_node, &vm_name)) {
			return MANIFEST_ERROR_RESERVED_VM_ID;
		}
	}

	/* Iterate over VM nodes until we find one that does not exist. */
	for (i = 0; i <= MAX_VMS; ++i) {
		ffa_vm_id_t vm_id = HF_VM_ID_OFFSET + i;
		struct fdt_node vm_node = hyp_node;

		generate_vm_node_name(&vm_name, vm_id);
		if (!fdt_find_child(&vm_node, &vm_name)) {
			break;
		}

		if (i == MAX_VMS) {
			return MANIFEST_ERROR_TOO_MANY_VMS;
		}

		if (vm_id == HF_PRIMARY_VM_ID) {
			CHECK(found_primary_vm == false); /* sanity check */
			found_primary_vm = true;
		}

		manifest->vm_count = i + 1;

		TRY(parse_vm_common(&vm_node, &manifest->vm[i], vm_id));

		if (manifest->vm[i].is_ffa_partition) {
			TRY(parse_ffa_partition_package(stage1_locked, &vm_node,
							&manifest->vm[i], vm_id,
							ppool));
		} else {
			TRY(parse_vm(&vm_node, &manifest->vm[i], vm_id));
		}
	}

	if (!found_primary_vm) {
		return MANIFEST_ERROR_NO_PRIMARY_VM;
	}

	return MANIFEST_SUCCESS;
}

const char *manifest_strerror(enum manifest_return_code ret_code)
{
	switch (ret_code) {
	case MANIFEST_SUCCESS:
		return "Success";
	case MANIFEST_ERROR_FILE_SIZE:
		return "Total size in header does not match file size";
	case MANIFEST_ERROR_MALFORMED_DTB:
		return "Malformed device tree blob";
	case MANIFEST_ERROR_NO_ROOT_NODE:
		return "Could not find root node in manifest";
	case MANIFEST_ERROR_NO_HYPERVISOR_FDT_NODE:
		return "Could not find \"hypervisor\" node in manifest";
	case MANIFEST_ERROR_NOT_COMPATIBLE:
		return "Hypervisor manifest entry not compatible with Hafnium";
	case MANIFEST_ERROR_RESERVED_VM_ID:
		return "Manifest defines a VM with a reserved ID";
	case MANIFEST_ERROR_NO_PRIMARY_VM:
		return "Manifest does not contain a primary VM entry";
	case MANIFEST_ERROR_TOO_MANY_VMS:
		return "Manifest specifies more VMs than Hafnium has "
		       "statically allocated space for";
	case MANIFEST_ERROR_PROPERTY_NOT_FOUND:
		return "Property not found";
	case MANIFEST_ERROR_MALFORMED_STRING:
		return "Malformed string property";
	case MANIFEST_ERROR_STRING_TOO_LONG:
		return "String too long";
	case MANIFEST_ERROR_MALFORMED_INTEGER:
		return "Malformed integer property";
	case MANIFEST_ERROR_INTEGER_OVERFLOW:
		return "Integer overflow";
	case MANIFEST_ERROR_MALFORMED_INTEGER_LIST:
		return "Malformed integer list property";
	case MANIFEST_ERROR_MALFORMED_BOOLEAN:
		return "Malformed boolean property";
	}

	panic("Unexpected manifest return code.");
}