1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
/*
* Copyright 2018 The Hafnium Authors.
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/BSD-3-Clause.
*/
#include "hf/arch/cpu.h"
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "hf/arch/plat/psci.h"
#include "hf/addr.h"
#include "hf/check.h"
#include "hf/ffa.h"
#include "hf/plat/interrupts.h"
#include "hf/std.h"
#include "hf/vm.h"
#include "feature_id.h"
#include "msr.h"
#include "perfmon.h"
#include "sysregs.h"
#if BRANCH_PROTECTION
__uint128_t pauth_apia_key;
#endif
#if ENABLE_MTE
/* MTE hypervisor seed. */
uintptr_t mte_seed;
#endif
/**
* The LO field indicates whether LORegions are supported.
*/
#define ID_AA64MMFR1_EL1_LO (UINT64_C(1) << 16)
static void lor_disable(void)
{
#if SECURE_WORLD == 0
/*
* Accesses to LORC_EL1 are undefined if LORegions are not supported.
*/
if (read_msr(ID_AA64MMFR1_EL1) & ID_AA64MMFR1_EL1_LO) {
write_msr(MSR_LORC_EL1, 0);
}
#endif
}
static void gic_regs_reset(struct arch_regs *r, bool is_primary)
{
#if GIC_VERSION == 3 || GIC_VERSION == 4
uint32_t ich_hcr = 0;
uint32_t icc_sre_el2 =
(1U << 0) | /* SRE, enable ICH_* and ICC_* at EL2. */
(0x3 << 1); /* DIB and DFB, disable IRQ/FIQ bypass. */
if (is_primary) {
icc_sre_el2 |= 1U << 3; /* Enable EL1 access to ICC_SRE_EL1. */
} else {
/* Trap EL1 access to GICv3 system registers. */
ich_hcr =
(0x1fU << 10); /* TDIR, TSEI, TALL1, TALL0, TC bits. */
}
r->gic.ich_hcr_el2 = ich_hcr;
r->gic.icc_sre_el2 = icc_sre_el2;
#endif
}
void arch_regs_reset(struct vcpu *vcpu)
{
ffa_vm_id_t vm_id = vcpu->vm->id;
bool is_primary = vm_id == HF_PRIMARY_VM_ID;
cpu_id_t vcpu_id = is_primary ? vcpu->cpu->id : vcpu_index(vcpu);
paddr_t table = vcpu->vm->ptable.root;
struct arch_regs *r = &vcpu->regs;
uintreg_t pc = r->pc;
uintreg_t arg = r->r[0];
uintreg_t cnthctl;
memset_s(r, sizeof(*r), 0, sizeof(*r));
r->pc = pc;
r->r[0] = arg;
cnthctl = 0;
if (is_primary) {
/*
* cnthctl_el2 is redefined when VHE is enabled.
* EL1PCTEN, don't trap phys cnt access.
* EL1PCEN, don't trap phys timer access.
*/
if (has_vhe_support()) {
cnthctl |= (1U << 10) | (1U << 11);
} else {
cnthctl |= (1U << 0) | (1U << 1);
}
}
r->hyp_state.hcr_el2 =
get_hcr_el2_value(vm_id, vcpu->vm->el0_partition);
r->hyp_state.sctlr_el2 = get_sctlr_el2_value(vcpu->vm->el0_partition);
r->lazy.cnthctl_el2 = cnthctl;
if (vcpu->vm->el0_partition) {
CHECK(has_vhe_support());
/*
* AArch64 hafnium only uses 8 bit ASIDs at the moment.
* TCR_EL2.AS is set to 0, and per the Arm ARM, the upper 8 bits
* are ignored and treated as 0. There is no need to mask the
* VMID (used as asid) to only 8 bits.
*/
r->hyp_state.ttbr0_el2 =
pa_addr(table) | ((uint64_t)vm_id << 48);
r->spsr = PSR_PE_MODE_EL0T;
} else {
r->hyp_state.ttbr0_el2 = read_msr(ttbr0_el2);
r->lazy.vtcr_el2 = arch_mm_get_vtcr_el2();
r->lazy.vttbr_el2 = pa_addr(table) | ((uint64_t)vm_id << 48);
#if SECURE_WORLD == 1
r->lazy.vstcr_el2 = arch_mm_get_vstcr_el2();
r->lazy.vsttbr_el2 = pa_addr(table);
#endif
r->lazy.vmpidr_el2 = vcpu_id;
/* Mask (disable) interrupts and run in EL1h mode. */
r->spsr = PSR_D | PSR_A | PSR_I | PSR_F | PSR_PE_MODE_EL1H;
r->lazy.mdcr_el2 = get_mdcr_el2_value();
/*
* NOTE: It is important that MDSCR_EL1.MDE (bit 15) is set to 0
* for secondary VMs as long as Hafnium does not support debug
* register access for secondary VMs. If adding Hafnium support
* for secondary VM debug register accesses, then on context
* switches Hafnium needs to save/restore EL1 debug register
* state that either might change, or that needs to be
* protected.
*/
r->lazy.mdscr_el1 = 0x0U & ~(0x1U << 15);
/* Disable cycle counting on initialization. */
r->lazy.pmccfiltr_el0 =
perfmon_get_pmccfiltr_el0_init_value(vm_id);
/* Set feature-specific register values. */
feature_set_traps(vcpu->vm, r);
}
gic_regs_reset(r, is_primary);
}
void arch_regs_set_pc_arg(struct arch_regs *r, ipaddr_t pc, uintreg_t arg)
{
r->pc = ipa_addr(pc);
r->r[0] = arg;
}
bool arch_regs_reg_num_valid(const unsigned int gp_reg_num)
{
return gp_reg_num < NUM_GP_REGS;
}
void arch_regs_set_gp_reg(struct arch_regs *r, const uintreg_t value,
const unsigned int gp_reg_num)
{
assert(arch_regs_reg_num_valid(gp_reg_num));
r->r[gp_reg_num] = value;
}
void arch_regs_set_retval(struct arch_regs *r, struct ffa_value v)
{
r->r[0] = v.func;
r->r[1] = v.arg1;
r->r[2] = v.arg2;
r->r[3] = v.arg3;
r->r[4] = v.arg4;
r->r[5] = v.arg5;
r->r[6] = v.arg6;
r->r[7] = v.arg7;
if (v.extended_val.valid) {
r->r[8] = v.extended_val.arg8;
r->r[9] = v.extended_val.arg9;
r->r[10] = v.extended_val.arg10;
r->r[11] = v.extended_val.arg11;
r->r[12] = v.extended_val.arg12;
r->r[13] = v.extended_val.arg13;
r->r[14] = v.extended_val.arg14;
r->r[15] = v.extended_val.arg15;
r->r[16] = v.extended_val.arg16;
r->r[17] = v.extended_val.arg17;
}
}
struct ffa_value arch_regs_get_args(struct arch_regs *regs)
{
return (struct ffa_value){
.func = regs->r[0],
.arg1 = regs->r[1],
.arg2 = regs->r[2],
.arg3 = regs->r[3],
.arg4 = regs->r[4],
.arg5 = regs->r[5],
.arg6 = regs->r[6],
.arg7 = regs->r[7],
.extended_val.valid = false,
};
}
/* Returns the SVE implemented VL in bytes (constrained by ZCR_EL3.LEN) */
static uint64_t arch_cpu_sve_len_get(void)
{
uint64_t vl;
__asm__ volatile(
".arch_extension sve;"
"rdvl %0, #1;"
".arch_extension nosve;"
: "=r"(vl));
return vl;
}
static void arch_cpu_sve_configure_sve_vector_length(void)
{
uint64_t vl_bits;
uint32_t zcr_len;
/*
* Set ZCR_EL2.LEN to the maximum vector length permitted by the
* architecture which applies to EL2 and lower ELs (limited by the
* HW implementation).
* This is done so that the VL read by arch_cpu_sve_len_get isn't
* constrained by EL2 and thus indirectly retrieves the value
* constrained by EL3 which applies to EL3 and lower ELs (limited by
* the HW implementation).
*/
write_msr(MSR_ZCR_EL2, ZCR_LEN_MAX);
isb();
vl_bits = arch_cpu_sve_len_get() << 3;
zcr_len = (vl_bits >> 7) - 1;
/*
* Set ZCR_EL2.LEN to the discovered value which contrains the VL at
* EL2 and lower ELs to the value set by EL3.
*/
write_msr(MSR_ZCR_EL2, zcr_len & ZCR_LEN_MASK);
isb();
}
void arch_cpu_init(struct cpu *c)
{
/*
* Linux expects LORegions to be disabled, hence if the current system
* supports them, Hafnium ensures that they are disabled.
*/
lor_disable();
write_msr(CPTR_EL2, get_cptr_el2_value());
/* Initialize counter-timer virtual offset register to 0. */
write_msr(CNTVOFF_EL2, 0);
isb();
if (is_arch_feat_sve_supported()) {
arch_cpu_sve_configure_sve_vector_length();
}
plat_interrupts_controller_hw_init(c);
}
struct vcpu *arch_vcpu_resume(struct cpu *c)
{
return plat_psci_cpu_resume(c);
}
|