blob: f642f0c31fca931718105293bc2256fab68f4d87 [file] [log] [blame]
/*
* Copyright 2022 The Hafnium Authors.
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/BSD-3-Clause.
*/
#include "hf/api.h"
#include "hf/arch/cpu.h"
#include "hf/arch/ffa.h"
#include "hf/arch/mm.h"
#include "hf/arch/other_world.h"
#include "hf/arch/plat/ffa.h"
#include "hf/arch/timer.h"
#include "hf/arch/vm.h"
#include "hf/check.h"
#include "hf/dlog.h"
#include "hf/ffa_internal.h"
#include "hf/ffa_memory.h"
#include "hf/ffa_v1_0.h"
#include "hf/mm.h"
#include "hf/plat/console.h"
#include "hf/plat/interrupts.h"
#include "hf/spinlock.h"
#include "hf/static_assert.h"
#include "hf/std.h"
#include "hf/vm.h"
#include "vmapi/hf/call.h"
#include "vmapi/hf/ffa.h"
#include "vmapi/hf/ffa_v1_0.h"
static_assert(sizeof(struct ffa_partition_info_v1_0) == 8,
"Partition information descriptor size doesn't match the one in "
"the FF-A 1.0 EAC specification, Table 82.");
static_assert(sizeof(struct ffa_partition_info) == 24,
"Partition information descriptor size doesn't match the one in "
"the FF-A 1.1 BETA0 EAC specification, Table 13.34.");
static_assert((sizeof(struct ffa_partition_info) & 7) == 0,
"Partition information descriptor must be a multiple of 8 bytes"
" for ffa_partition_info_get_regs to work correctly. Information"
" from this structure are returned in 8 byte registers and the"
" count of 8 byte registers is returned by the ABI.");
/*
* To eliminate the risk of deadlocks, we define a partial order for the
* acquisition of locks held concurrently by the same physical CPU. Our current
* ordering requirements are as follows:
*
* vm::lock -> vcpu::lock -> mm_stage1_lock -> dlog sl
*
* Locks of the same kind require the lock of lowest address to be locked first,
* see `sl_lock_both()`.
*/
static_assert(HF_MAILBOX_SIZE == PAGE_SIZE,
"Currently, a page is mapped for the send and receive buffers so "
"the maximum request is the size of a page.");
static_assert(MM_PPOOL_ENTRY_SIZE >= HF_MAILBOX_SIZE,
"The page pool entry size must be at least as big as the mailbox "
"size, so that memory region descriptors can be copied from the "
"mailbox for memory sharing.");
/*
* Maximum ffa_partition_info entries that can be returned by an invocation
* of FFA_PARTITION_INFO_GET_REGS_64 is size in bytes, of available
* registers/args in struct ffa_value divided by size of struct
* ffa_partition_info. For this ABI, arg3-arg17 in ffa_value can be used, i.e.
* 15 uint64_t fields. For FF-A v1.1, this value should be 5.
*/
#define MAX_INFO_REGS_ENTRIES_PER_CALL \
((15 * sizeof(uint64_t)) / sizeof(struct ffa_partition_info))
static_assert(MAX_INFO_REGS_ENTRIES_PER_CALL == 5,
"FF-A v1.1 supports no more than 5 entries"
" per FFA_PARTITION_INFO_GET_REGS64 calls");
static struct mpool api_page_pool;
/**
* Initialises the API page pool by taking ownership of the contents of the
* given page pool.
*/
void api_init(struct mpool *ppool)
{
mpool_init_from(&api_page_pool, ppool);
}
/**
* Get target VM vCPU:
* If VM is UP then return first vCPU.
* If VM is MP then return vCPU whose index matches current CPU index.
*/
struct vcpu *api_ffa_get_vm_vcpu(struct vm *vm, struct vcpu *current)
{
ffa_vcpu_index_t current_cpu_index = cpu_index(current->cpu);
struct vcpu *vcpu = NULL;
CHECK((vm != NULL) && (current != NULL));
if (vm->vcpu_count == 1) {
vcpu = vm_get_vcpu(vm, 0);
} else if (current_cpu_index < vm->vcpu_count) {
vcpu = vm_get_vcpu(vm, current_cpu_index);
}
return vcpu;
}
/**
* Switches the physical CPU back to the corresponding vCPU of the VM whose ID
* is given as argument of the function.
*
* Called to change the context between SPs for direct messaging (when Hafnium
* is SPMC), and on the context of the remaining 'api_switch_to_*' functions.
*
* This function works for partitions that are:
* - UP migratable.
* - MP with pinned Execution Contexts.
*/
struct vcpu *api_switch_to_vm(struct vcpu_locked current_locked,
struct ffa_value to_ret,
enum vcpu_state vcpu_state, ffa_id_t to_id)
{
struct vm *to_vm = vm_find(to_id);
struct vcpu *next = api_ffa_get_vm_vcpu(to_vm, current_locked.vcpu);
CHECK(next != NULL);
/* Set the return value for the target VM. */
arch_regs_set_retval(&next->regs, to_ret);
/* Set the current vCPU state. */
current_locked.vcpu->state = vcpu_state;
return next;
}
/**
* Switches the physical CPU back to the corresponding vCPU of the primary VM.
*
* This triggers the scheduling logic to run. Run in the context of secondary VM
* to cause FFA_RUN to return and the primary VM to regain control of the CPU.
*/
struct vcpu *api_switch_to_primary(struct vcpu_locked current_locked,
struct ffa_value primary_ret,
enum vcpu_state secondary_state)
{
/*
* If the secondary is blocked but has a timer running, sleep until the
* timer fires rather than indefinitely.
*/
switch (primary_ret.func) {
case HF_FFA_RUN_WAIT_FOR_INTERRUPT:
case FFA_MSG_WAIT_32: {
if (arch_timer_enabled_current()) {
uint64_t remaining_ns =
arch_timer_remaining_ns_current();
if (remaining_ns == 0) {
/*
* Timer is pending, so the current vCPU should
* be run again right away.
*/
primary_ret = (struct ffa_value){
.func = FFA_INTERRUPT_32};
} else {
primary_ret.arg2 = remaining_ns;
}
} else {
primary_ret.arg2 = FFA_SLEEP_INDEFINITE;
}
break;
}
default:
/* Do nothing. */
break;
}
return api_switch_to_vm(current_locked, primary_ret, secondary_state,
HF_PRIMARY_VM_ID);
}
/**
* Choose next vCPU to run to be the counterpart vCPU in the other
* world (run the normal world if currently running in the secure
* world). Set current vCPU state to the given vcpu_state parameter.
* Set FF-A return values to the target vCPU in the other world.
*
* Called in context of a direct message response from a secure
* partition to a VM.
*/
struct vcpu *api_switch_to_other_world(struct vcpu_locked current_locked,
struct ffa_value other_world_ret,
enum vcpu_state vcpu_state)
{
return api_switch_to_vm(current_locked, other_world_ret, vcpu_state,
HF_OTHER_WORLD_ID);
}
/**
* Returns true if the given vCPU is executing in context of an
* FFA_MSG_SEND_DIRECT_REQ invocation.
*/
bool is_ffa_direct_msg_request_ongoing(struct vcpu_locked locked)
{
return locked.vcpu->direct_request_origin.vm_id != HF_INVALID_VM_ID;
}
/**
* Returns true if the VM owning the given vCPU is supporting managed exit and
* the vCPU is currently processing a managed exit.
*/
static bool api_ffa_is_managed_exit_ongoing(struct vcpu_locked vcpu_locked)
{
return (plat_ffa_vm_managed_exit_supported(vcpu_locked.vcpu->vm) &&
vcpu_locked.vcpu->processing_managed_exit);
}
/**
* Returns to the primary VM and signals that the vCPU still has work to do so.
*/
struct vcpu *api_preempt(struct vcpu *current)
{
struct vcpu_locked current_locked;
struct vcpu *next;
struct ffa_value ret = {
.func = FFA_INTERRUPT_32,
.arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)),
};
current_locked = vcpu_lock(current);
next = api_switch_to_primary(current_locked, ret, VCPU_STATE_PREEMPTED);
vcpu_unlock(&current_locked);
return next;
}
/**
* Puts the current vCPU in wait for interrupt mode, and returns to the primary
* VM.
*/
struct vcpu *api_wait_for_interrupt(struct vcpu *current)
{
struct vcpu_locked current_locked;
struct vcpu *next;
struct ffa_value ret = {
.func = HF_FFA_RUN_WAIT_FOR_INTERRUPT,
.arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)),
};
current_locked = vcpu_lock(current);
next = api_switch_to_primary(current_locked, ret,
VCPU_STATE_BLOCKED_INTERRUPT);
vcpu_unlock(&current_locked);
return next;
}
/**
* Puts the current vCPU in off mode, and returns to the primary VM.
*/
struct vcpu *api_vcpu_off(struct vcpu *current)
{
struct vcpu_locked current_locked;
struct vcpu *next;
struct ffa_value ret = {
.func = HF_FFA_RUN_WAIT_FOR_INTERRUPT,
.arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)),
};
current_locked = vcpu_lock(current);
/*
* Disable the timer, so the scheduler doesn't get told to call back
* based on it.
*/
arch_timer_disable_current();
next = api_switch_to_primary(current_locked, ret, VCPU_STATE_OFF);
vcpu_unlock(&current_locked);
return next;
}
/**
* The current vCPU is blocked on some resource and needs to relinquish
* control back to the execution context of the endpoint that originally
* allocated cycles to it.
*/
struct ffa_value api_yield(struct vcpu *current, struct vcpu **next,
struct ffa_value *args)
{
struct ffa_value ret = (struct ffa_value){.func = FFA_SUCCESS_32};
struct vcpu_locked current_locked;
bool transition_allowed;
enum vcpu_state next_state = VCPU_STATE_RUNNING;
uint32_t timeout_low = 0;
uint32_t timeout_high = 0;
struct vcpu_locked next_locked = (struct vcpu_locked){
.vcpu = NULL,
};
if (args != NULL) {
if (args->arg4 != 0U || args->arg5 != 0U || args->arg6 != 0U ||
args->arg7 != 0U) {
dlog_error(
"Parameters passed through registers X4-X7 "
"must be zero\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
timeout_low = (uint32_t)args->arg2 & 0xFFFFFFFF;
timeout_high = (uint32_t)args->arg3 & 0xFFFFFFFF;
}
if (current->vm->id == HF_PRIMARY_VM_ID) {
/* NOOP on the primary as it makes the scheduling decisions. */
return ret;
}
current_locked = vcpu_lock(current);
transition_allowed = plat_ffa_check_runtime_state_transition(
current_locked, current->vm->id, HF_INVALID_VM_ID, next_locked,
FFA_YIELD_32, &next_state);
if (!transition_allowed) {
ret = ffa_error(FFA_DENIED);
goto out;
}
/*
* The current vCPU is expected to move to BLOCKED state. However,
* under certain circumstances, it is allowed for the current vCPU
* to be resumed immediately without ever moving to BLOCKED state. One
* such scenario occurs when an SP's execution context attempts to
* yield cycles while handling secure interrupt. Refer to the comments
* in the SPMC variant of the plat_ffa_yield_prepare function.
*/
assert(!vm_id_is_current_world(current->vm->id) ||
next_state == VCPU_STATE_BLOCKED);
ret = plat_ffa_yield_prepare(current_locked, next, timeout_low,
timeout_high);
out:
vcpu_unlock(&current_locked);
return ret;
}
/**
* Switches to the primary so that it can switch to the target, or kick it if it
* is already running on a different physical CPU.
*/
static struct vcpu *api_wake_up_locked(struct vcpu_locked current_locked,
struct vcpu *target_vcpu)
{
struct ffa_value ret = {
.func = FFA_INTERRUPT_32,
.arg1 = ffa_vm_vcpu(target_vcpu->vm->id,
vcpu_index(target_vcpu)),
};
return api_switch_to_primary(current_locked, ret, VCPU_STATE_BLOCKED);
}
struct vcpu *api_wake_up(struct vcpu *current, struct vcpu *target_vcpu)
{
struct vcpu_locked current_locked;
struct vcpu *next;
current_locked = vcpu_lock(current);
next = api_wake_up_locked(current_locked, target_vcpu);
vcpu_unlock(&current_locked);
return next;
}
/**
* Aborts the vCPU and triggers its VM to abort fully.
*/
struct vcpu *api_abort(struct vcpu *current)
{
struct ffa_value ret = ffa_error(FFA_ABORTED);
struct vcpu_locked current_locked;
struct vcpu *next;
struct vm_locked vm_locked;
dlog_notice("Aborting VM %#x vCPU %u\n", current->vm->id,
vcpu_index(current));
if (current->vm->id == HF_PRIMARY_VM_ID) {
/* TODO: what to do when the primary aborts? */
for (;;) {
/* Do nothing. */
}
}
atomic_store_explicit(&current->vm->aborting, true,
memory_order_relaxed);
vm_locked = vm_lock(current->vm);
plat_ffa_free_vm_resources(vm_locked);
vm_unlock(&vm_locked);
current_locked = vcpu_lock(current);
next = api_switch_to_primary(current_locked, ret, VCPU_STATE_ABORTED);
vcpu_unlock(&current_locked);
return next;
}
/*
* Format the partition info descriptors according to the version supported
* by the endpoint and return the size of the array created.
*/
static struct ffa_value send_versioned_partition_info_descriptors(
struct vm_locked vm_locked, struct ffa_partition_info *partitions,
uint32_t vm_count)
{
struct vm *vm = vm_locked.vm;
uint32_t version = vm->ffa_version;
uint32_t partition_info_size;
uint32_t buffer_size;
struct ffa_value ret;
/* Acquire receiver's RX buffer. */
if (!plat_ffa_acquire_receiver_rx(vm_locked, &ret)) {
dlog_verbose("Failed to acquire RX buffer for VM %x\n", vm->id);
return ret;
}
if (vm_is_mailbox_busy(vm_locked)) {
/*
* Can't retrieve memory information if the mailbox is not
* available.
*/
dlog_verbose("RX buffer not ready.\n");
return ffa_error(FFA_BUSY);
}
if (version == MAKE_FFA_VERSION(1, 0)) {
struct ffa_partition_info_v1_0 *recv_mailbox = vm->mailbox.recv;
partition_info_size = sizeof(struct ffa_partition_info_v1_0);
buffer_size = partition_info_size * vm_count;
if (buffer_size > HF_MAILBOX_SIZE) {
dlog_error(
"Partition information does not fit in the "
"VM's RX "
"buffer.\n");
return ffa_error(FFA_NO_MEMORY);
}
for (uint32_t i = 0; i < vm_count; i++) {
/*
* Populate the VM's RX buffer with the partition
* information. Clear properties bits that must be zero
* according to DEN0077A FF-A v1.0 REL Table 8.25.
*/
recv_mailbox[i].vm_id = partitions[i].vm_id;
recv_mailbox[i].vcpu_count = partitions[i].vcpu_count;
recv_mailbox[i].properties =
partitions[i].properties &
~FFA_PARTITION_v1_0_RES_MASK;
}
} else {
partition_info_size = sizeof(struct ffa_partition_info);
buffer_size = partition_info_size * vm_count;
if (buffer_size > HF_MAILBOX_SIZE) {
dlog_error(
"Partition information does not fit in the "
"VM's RX "
"buffer.\n");
return ffa_error(FFA_NO_MEMORY);
}
/* Populate the VM's RX buffer with the partition information.
*/
memcpy_s(vm->mailbox.recv, HF_MAILBOX_SIZE, partitions,
buffer_size);
}
vm->mailbox.recv_size = buffer_size;
/* Sender is Hypervisor in the normal world (TEE in secure world). */
vm->mailbox.recv_sender = HF_VM_ID_BASE;
vm->mailbox.recv_func = FFA_PARTITION_INFO_GET_32;
vm->mailbox.state = MAILBOX_STATE_FULL;
/*
* Return the count of partition information descriptors in w2
* and the size of the descriptors in w3.
*/
return (struct ffa_value){.func = FFA_SUCCESS_32,
.arg2 = vm_count,
.arg3 = partition_info_size};
}
static void api_ffa_fill_partitions_info_array(
struct ffa_partition_info *partitions, size_t partitions_len,
const struct ffa_uuid *uuid, bool count_flag, ffa_id_t vm_id,
ffa_vm_count_t *vm_count_out)
{
ffa_vm_count_t vm_count = 0;
bool uuid_is_null = ffa_uuid_is_null(uuid);
assert(vm_get_count() <= partitions_len);
/*
* Iterate through the VMs to find the ones with a matching
* UUID. A Null UUID retrieves information for all VMs.
*/
for (ffa_vm_count_t index = 0; index < vm_get_count(); ++index) {
struct vm *vm = vm_find_index(index);
for (uint32_t i = 0; i < PARTITION_MAX_UUIDS; i++) {
/*
* Null UUID indicates reaching the end of a
* partition's array of UUIDs.
*/
if (ffa_uuid_is_null(&vm->uuids[i])) {
break;
}
if (uuid_is_null ||
ffa_uuid_equal(uuid, &vm->uuids[i])) {
uint16_t array_index = vm_count;
++vm_count;
if (count_flag) {
continue;
}
partitions[array_index].vm_id = vm->id;
partitions[array_index].vcpu_count =
vm->vcpu_count;
partitions[array_index].properties =
plat_ffa_partition_properties(vm_id,
vm);
partitions[array_index].properties |=
vm_are_notifications_enabled(vm)
? FFA_PARTITION_NOTIFICATION
: 0;
partitions[array_index].properties |=
FFA_PARTITION_AARCH64_EXEC;
if (uuid_is_null) {
partitions[array_index].uuid =
vm->uuids[i];
}
}
}
}
*vm_count_out = vm_count;
}
static inline void api_ffa_pack_vmid_count_props(
uint64_t *xn, ffa_id_t vm_id, ffa_vcpu_count_t vcpu_count,
ffa_partition_properties_t properties)
{
*xn = (uint64_t)vm_id;
*xn |= (uint64_t)vcpu_count << 16;
*xn |= (uint64_t)properties << 32;
}
static inline void api_ffa_pack_uuid(uint64_t *xn_1, uint64_t *xn_2,
struct ffa_uuid *uuid)
{
*xn_1 = (uint64_t)uuid->uuid[0];
*xn_1 |= (uint64_t)uuid->uuid[1] << 32;
*xn_2 = (uint64_t)uuid->uuid[2];
*xn_2 |= (uint64_t)uuid->uuid[3] << 32;
}
/**
* This function forwards the FFA_PARTITION_INFO_GET_REGS ABI to the other world
* when hafnium is the hypervisor to determine the secure partitions. When
* hafnium is the SPMC, this function forwards the call to the SPMD to discover
* SPMD logical partitions. The function returns true when partition information
* is filled in the partitions array and false if there are errors. Note that
* the SPMD and SPMC may return an FF-A error code of FFA_NOT_SUPPORTED when
* there are no SPMD logical partitions or no secure partitions respectively,
* and this is not considered a failure of the forwarded call. A caller is
* expected to check the return value before consuming the information in the
* partitions array passed in and ret_count.
*/
static bool api_ffa_partition_info_get_regs_forward(
const struct ffa_uuid *uuid, const uint16_t tag,
struct ffa_partition_info *partitions, uint16_t partitions_len,
ffa_vm_count_t *ret_count)
{
(void)tag;
struct ffa_value ret;
uint16_t last_index = UINT16_MAX;
uint16_t curr_index = 0;
uint16_t start_index = 0;
if (!plat_ffa_partition_info_get_regs_forward_allowed()) {
return true;
}
while (start_index <= last_index) {
ret = ffa_partition_info_get_regs(uuid, start_index, 0);
if (ffa_func_id(ret) != FFA_SUCCESS_64) {
/*
* If there are no logical partitions, SPMD returns
* NOT_SUPPORTED, that is not an error. If there are no
* secure partitions the SPMC returns NOT_SUPPORTED.
*/
if ((ffa_func_id(ret) == FFA_ERROR_32) &&
(ffa_error_code(ret) == FFA_NOT_SUPPORTED)) {
return true;
}
return false;
}
if (!api_ffa_fill_partition_info_from_regs(
ret, start_index, partitions, partitions_len,
ret_count)) {
return false;
}
last_index = ffa_partition_info_regs_get_last_idx(ret);
curr_index = ffa_partition_info_regs_get_curr_idx(ret);
start_index = curr_index + 1;
}
return true;
}
bool api_ffa_fill_partition_info_from_regs(
struct ffa_value ret, uint16_t start_index,
struct ffa_partition_info *partitions, uint16_t partitions_len,
ffa_vm_count_t *ret_count)
{
uint16_t vm_count = *ret_count;
uint16_t curr_index = 0;
uint8_t num_entries = 0;
uint8_t idx = 0;
/* List of pointers to args in return value. */
uint64_t *arg_ptrs[] = {
&ret.arg3,
&ret.arg4,
&ret.arg5,
&ret.arg6,
&ret.arg7,
&ret.extended_val.arg8,
&ret.extended_val.arg9,
&ret.extended_val.arg10,
&ret.extended_val.arg11,
&ret.extended_val.arg12,
&ret.extended_val.arg13,
&ret.extended_val.arg14,
&ret.extended_val.arg15,
&ret.extended_val.arg16,
&ret.extended_val.arg17,
};
if (vm_count > partitions_len) {
return false;
}
/*
* Tags are currently unused in the implementation. Expect it to be
* zero since the implementation does not provide a tag when calling
* the FFA_PARTITION_INFO_GET_REGS ABI.
*/
assert(ffa_partition_info_regs_get_tag(ret) == 0);
/*
* Hafnium expects the size of the returned descriptor to be equal to
* the size of the structure in the FF-A 1.1 specification. When future
* enhancements are made, this assert can be relaxed.
*/
assert(ffa_partition_info_regs_get_desc_size(ret) ==
sizeof(struct ffa_partition_info));
curr_index = ffa_partition_info_regs_get_curr_idx(ret);
/* FF-A 1.2 ALP0, section 14.9.2 Usage rule 7. */
assert(start_index <= curr_index);
num_entries = curr_index - start_index + 1;
if (num_entries > (partitions_len - vm_count) ||
num_entries > MAX_INFO_REGS_ENTRIES_PER_CALL) {
return false;
}
while (num_entries) {
uint64_t info = *(arg_ptrs[(ptrdiff_t)(idx++)]);
uint64_t uuid_lo = *(arg_ptrs[(ptrdiff_t)(idx++)]);
uint64_t uuid_high = *(arg_ptrs[(ptrdiff_t)(idx++)]);
partitions[vm_count].vm_id = info & 0xFFFF;
partitions[vm_count].vcpu_count = (info >> 16) & 0xFFFF;
partitions[vm_count].properties = (info >> 32);
partitions[vm_count].uuid.uuid[0] = uuid_lo & 0xFFFFFFFF;
partitions[vm_count].uuid.uuid[1] =
(uuid_lo >> 32) & 0xFFFFFFFF;
partitions[vm_count].uuid.uuid[2] = uuid_high & 0xFFFFFFFF;
partitions[vm_count].uuid.uuid[3] =
(uuid_high >> 32) & 0xFFFFFFFF;
vm_count++;
num_entries--;
}
*ret_count = vm_count;
return true;
}
struct ffa_value api_ffa_partition_info_get_regs(struct vcpu *current,
const struct ffa_uuid *uuid,
const uint16_t start_index,
const uint16_t tag)
{
struct vm *current_vm = current->vm;
static struct ffa_partition_info partitions[2 * MAX_VMS];
bool uuid_is_null = ffa_uuid_is_null(uuid);
ffa_vm_count_t vm_count = 0;
struct ffa_value ret = ffa_error(FFA_INVALID_PARAMETERS);
uint16_t max_idx = 0;
uint16_t curr_idx = 0;
uint8_t num_entries_to_ret = 0;
uint8_t arg_idx = 3;
/* list of pointers to args in return value */
uint64_t *arg_ptrs[] = {
&(ret).func,
&(ret).arg1,
&(ret).arg2,
&(ret).arg3,
&(ret).arg4,
&(ret).arg5,
&(ret).arg6,
&(ret).arg7,
&(ret).extended_val.arg8,
&(ret).extended_val.arg9,
&(ret).extended_val.arg10,
&(ret).extended_val.arg11,
&(ret).extended_val.arg12,
&(ret).extended_val.arg13,
&(ret).extended_val.arg14,
&(ret).extended_val.arg15,
&(ret).extended_val.arg16,
&(ret).extended_val.arg17,
};
/* TODO: Add support for using tags */
if (tag != 0) {
dlog_error("Tag not 0. Unsupported tag. %d\n", tag);
return ffa_error(FFA_RETRY);
}
memset_s(&partitions, sizeof(partitions), 0, sizeof(partitions));
api_ffa_fill_partitions_info_array(partitions, ARRAY_SIZE(partitions),
uuid, false, current_vm->id,
&vm_count);
/* If UUID is Null vm_count must not be zero at this stage. */
CHECK(!uuid_is_null || vm_count != 0);
/*
* When running the Hypervisor:
* - If UUID is Null the Hypervisor forwards the query to the SPMC for
* it to fill with secure partitions information.
* When running the SPMC, the SPMC forwards the call to the SPMD to
* discover any EL3 SPMD logical partitions, if the call came from an
* SP. Otherwise, the call is not forwarded.
* TODO: Note that for this ABI, forwarding on every invocation when
* uuid is Null is inefficient,and if performance becomes a problem,
* this would be a good place to optimize using strategies such as
* caching info etc. For now, assuming this inefficiency is not a major
* issue.
* - If UUID is non-Null vm_count may be zero because the UUID matches
* a secure partition and the query is forwarded to the SPMC.
* When running the SPMC:
* - If UUID is non-Null and vm_count is zero it means there is no such
* partition identified in the system.
*/
if (vm_id_is_current_world(current_vm->id)) {
if (!api_ffa_partition_info_get_regs_forward(
uuid, tag, partitions, ARRAY_SIZE(partitions),
&vm_count)) {
dlog_error(
"Failed to forward "
"ffa_partition_info_get_regs.\n");
return ffa_error(FFA_DENIED);
}
}
/*
* Unrecognized UUID: does not match any of the VMs (or SPs)
* and is not Null.
*/
if (vm_count == 0 || vm_count > ARRAY_SIZE(partitions)) {
dlog_verbose(
"Invalid parameters. vm_count = %d (must not be zero "
"or > %d)\n",
vm_count, ARRAY_SIZE(partitions));
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (start_index >= vm_count) {
dlog_error(
"start index = %d vm_count = %d (start_index must be "
"less than vm_count)\n",
start_index, vm_count);
return ffa_error(FFA_INVALID_PARAMETERS);
}
max_idx = vm_count - 1;
num_entries_to_ret = (max_idx - start_index) + 1;
num_entries_to_ret =
MIN(num_entries_to_ret, MAX_INFO_REGS_ENTRIES_PER_CALL);
curr_idx = start_index + num_entries_to_ret - 1;
assert(curr_idx <= max_idx);
ret.func = FFA_SUCCESS_64;
ret.arg2 = (sizeof(struct ffa_partition_info) & 0xFFFF) << 48;
ret.arg2 |= curr_idx << 16;
ret.arg2 |= max_idx;
if (num_entries_to_ret > 1) {
ret.extended_val.valid = 1;
}
for (uint16_t idx = start_index; idx <= curr_idx; ++idx) {
uint64_t *xn_0 = arg_ptrs[arg_idx++];
uint64_t *xn_1 = arg_ptrs[arg_idx++];
uint64_t *xn_2 = arg_ptrs[arg_idx++];
api_ffa_pack_vmid_count_props(xn_0, partitions[idx].vm_id,
partitions[idx].vcpu_count,
partitions[idx].properties);
if (uuid_is_null) {
api_ffa_pack_uuid(xn_1, xn_2, &partitions[idx].uuid);
}
assert(arg_idx <= ARRAY_SIZE(arg_ptrs));
}
return ret;
}
struct ffa_value api_ffa_partition_info_get(struct vcpu *current,
const struct ffa_uuid *uuid,
const uint32_t flags)
{
struct vm *current_vm = current->vm;
ffa_vm_count_t vm_count = 0;
bool count_flag = (flags & FFA_PARTITION_COUNT_FLAG_MASK) ==
FFA_PARTITION_COUNT_FLAG;
bool uuid_is_null = ffa_uuid_is_null(uuid);
struct ffa_partition_info partitions[2 * MAX_VMS] = {0};
struct vm_locked vm_locked;
struct ffa_value ret;
/* Bits 31:1 Must Be Zero */
if ((flags & ~FFA_PARTITION_COUNT_FLAG_MASK) != 0) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
api_ffa_fill_partitions_info_array(partitions, ARRAY_SIZE(partitions),
uuid, count_flag, current_vm->id,
&vm_count);
/* If UUID is Null vm_count must not be zero at this stage. */
CHECK(!uuid_is_null || vm_count != 0);
/*
* When running the Hypervisor:
* - If UUID is Null the Hypervisor forwards the query to the SPMC for
* it to fill with secure partitions information.
* - If UUID is non-Null vm_count may be zero because the UUID matches
* a secure partition and the query is forwarded to the SPMC.
* When running the SPMC:
* - If UUID is non-Null and vm_count is zero it means there is no such
* partition identified in the system.
*/
plat_ffa_partition_info_get_forward(uuid, flags, partitions, &vm_count);
/*
* Unrecognized UUID: does not match any of the VMs (or SPs)
* and is not Null.
*/
if (vm_count == 0) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* If the count flag is set we don't need to return the partition info
* descriptors.
*/
if (count_flag) {
return (struct ffa_value){.func = FFA_SUCCESS_32,
.arg2 = vm_count};
}
vm_locked = vm_lock(current_vm);
ret = send_versioned_partition_info_descriptors(vm_locked, partitions,
vm_count);
vm_unlock(&vm_locked);
return ret;
}
/**
* Returns the ID of the VM.
*/
struct ffa_value api_ffa_id_get(const struct vcpu *current)
{
return (struct ffa_value){.func = FFA_SUCCESS_32,
.arg2 = current->vm->id};
}
/**
* Returns the SPMC FF-A ID at NS virtual/physical and secure virtual
* FF-A instances.
* DEN0077A FF-A v1.1 Beta0 section 13.9 FFA_SPM_ID_GET.
*/
struct ffa_value api_ffa_spm_id_get(void)
{
#if (MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED)
/*
* Return the SPMC ID that was fetched during FF-A
* initialization.
*/
return (struct ffa_value){.func = FFA_SUCCESS_32,
.arg2 = arch_ffa_spmc_id_get()};
#else
return ffa_error(FFA_NOT_SUPPORTED);
#endif
}
/**
* This function is called by the architecture-specific context switching
* function to indicate that register state for the given vCPU has been saved
* and can therefore be used by other pCPUs.
*/
void api_regs_state_saved(struct vcpu *vcpu)
{
sl_lock(&vcpu->lock);
vcpu->regs_available = true;
sl_unlock(&vcpu->lock);
}
/**
* Assuming that the arguments have already been checked by the caller, injects
* a virtual interrupt of the given ID into the given target vCPU. This doesn't
* cause the vCPU to actually be run immediately; it will be taken when the vCPU
* is next run, which is up to the scheduler.
*
* Returns:
* - 0 on success if no further action is needed.
* - 1 if it was called by the primary VM and the primary VM now needs to wake
* up or kick the target vCPU.
*/
int64_t api_interrupt_inject_locked(struct vcpu_locked target_locked,
uint32_t intid,
struct vcpu_locked current_locked,
struct vcpu **next)
{
struct vcpu *target_vcpu = target_locked.vcpu;
struct vcpu *current = current_locked.vcpu;
struct interrupts *interrupts = &target_vcpu->interrupts;
int64_t ret = 0;
/*
* We only need to change state and (maybe) trigger a virtual interrupt
* if it is enabled and was not previously pending. Otherwise we can
* skip everything except setting the pending bit.
*/
if (!(vcpu_is_virt_interrupt_enabled(interrupts, intid) &&
!vcpu_is_virt_interrupt_pending(interrupts, intid))) {
goto out;
}
/* Increment the count. */
vcpu_interrupt_count_increment(target_locked, interrupts, intid);
/*
* Only need to update state if there was not already an
* interrupt enabled and pending.
*/
if (vcpu_interrupt_count_get(target_locked) != 1) {
goto out;
}
if (current->vm->id == HF_PRIMARY_VM_ID) {
/*
* If the call came from the primary VM, let it know that it
* should run or kick the target vCPU.
*/
ret = 1;
} else if (current != target_vcpu && next != NULL) {
*next = api_wake_up_locked(current_locked, target_vcpu);
}
out:
/* Either way, make it pending. */
vcpu_virt_interrupt_set_pending(interrupts, intid);
return ret;
}
/**
* Constructs the return value from a successful FFA_MSG_WAIT call, when used
* with FFA_MSG_SEND_32.
*/
struct ffa_value ffa_msg_recv_return(const struct vm *receiver)
{
switch (receiver->mailbox.recv_func) {
case FFA_MSG_SEND_32:
return (struct ffa_value){
.func = FFA_MSG_SEND_32,
.arg1 = (receiver->mailbox.recv_sender << 16) |
receiver->id,
.arg3 = receiver->mailbox.recv_size};
case FFA_MSG_SEND2_32:
return (struct ffa_value){
.func = FFA_RUN_32,
/*
* TODO: FFA_RUN should return vCPU and VM ID in arg1.
* Retrieving vCPU requires a rework of the function,
* while receiver ID must be set because it's checked by
* other APIs (eg: FFA_NOTIFICATION_GET).
*/
.arg1 = receiver->id};
default:
/* This should never be reached, but return an error in case. */
dlog_error("Tried to return an invalid message function %#x\n",
receiver->mailbox.recv_func);
return ffa_error(FFA_DENIED);
}
}
/**
* Change the state of mailbox to empty, such that the ownership is given to the
* Partition manager.
* Returns true if the mailbox was reset successfully, false otherwise.
*/
static bool api_release_mailbox(struct vm_locked vm_locked, int32_t *error_code)
{
ffa_id_t vm_id = vm_locked.vm->id;
int32_t error_code_to_ret = 0;
switch (vm_locked.vm->mailbox.state) {
case MAILBOX_STATE_EMPTY:
dlog_verbose("Mailbox of %x is empty.\n", vm_id);
error_code_to_ret = FFA_DENIED;
break;
case MAILBOX_STATE_FULL:
/* Check it doesn't have pending RX full notifications. */
if (vm_are_fwk_notifications_pending(vm_locked)) {
dlog_verbose(
"Mailbox of endpoint %x has pending "
"messages.\n",
vm_id);
error_code_to_ret = FFA_DENIED;
}
break;
case MAILBOX_STATE_OTHER_WORLD_OWNED:
/*
* The SPMC shouldn't let SP's mailbox get into this state.
* For the Hypervisor, the VM may call FFA_RX_RELEASE, whilst
* the mailbox is in this state. In that case, we should report
* error.
*/
if (vm_id_is_current_world(vm_id)) {
dlog_verbose(
"Mailbox of endpoint %x in a wrongful state.\n",
vm_id);
error_code_to_ret = FFA_ABORTED;
}
break;
}
if (error_code_to_ret != 0) {
if (error_code != NULL) {
*error_code = error_code_to_ret;
}
return false;
}
vm_locked.vm->mailbox.state = MAILBOX_STATE_EMPTY;
return true;
}
/*
* Helper to check if extended arguments (corresponding to regs x8-x17)
* are zeroed out.
*/
bool api_extended_args_are_zero(struct ffa_value *args)
{
if (args->extended_val.arg8 != 0U || args->extended_val.arg9 != 0U ||
args->extended_val.arg10 != 0U || args->extended_val.arg11 != 0U ||
args->extended_val.arg12 != 0U || args->extended_val.arg13 != 0U ||
args->extended_val.arg14 != 0U || args->extended_val.arg15 != 0U ||
args->extended_val.arg16 != 0U || args->extended_val.arg17 != 0U) {
return false;
}
return true;
}
struct ffa_value api_ffa_msg_wait(struct vcpu *current, struct vcpu **next,
struct ffa_value *args)
{
struct vcpu_locked current_locked;
enum vcpu_state next_state = VCPU_STATE_RUNNING;
struct ffa_value ret;
struct vcpu_locked next_locked = (struct vcpu_locked){
.vcpu = NULL,
};
if (args->arg1 != 0U || args->arg2 != 0U || args->arg3 != 0U ||
args->arg4 != 0U || args->arg5 != 0U || args->arg6 != 0U ||
args->arg7 != 0U) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (current->vm->ffa_version >= MAKE_FFA_VERSION(1, 2) &&
!api_extended_args_are_zero(args)) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
current_locked = vcpu_lock(current);
if (!plat_ffa_check_runtime_state_transition(
current_locked, current->vm->id, HF_INVALID_VM_ID,
next_locked, FFA_MSG_WAIT_32, &next_state)) {
ret = ffa_error(FFA_DENIED);
goto out;
}
assert(!vm_id_is_current_world(current->vm->id) ||
next_state == VCPU_STATE_WAITING);
ret = plat_ffa_msg_wait_prepare(current_locked, next);
out:
vcpu_unlock(&current_locked);
return ret;
}
/**
* Prepares the vCPU to run by updating its state and fetching whether a return
* value needs to be forced onto the vCPU.
*/
static bool api_vcpu_prepare_run(struct vcpu_locked current_locked,
struct vcpu_locked vcpu_next_locked,
struct ffa_value *run_ret)
{
struct vm_locked vm_locked;
bool ret;
uint64_t timer_remaining_ns = FFA_SLEEP_INDEFINITE;
bool vcpu_was_init_state = false;
bool need_vm_lock;
struct two_vcpu_locked vcpus_locked;
/*
* Check that the registers are available so that the vCPU can be run.
*
* The VM lock is not needed in the common case so it must only be taken
* when it is going to be needed. This ensures there are no inter-vCPU
* dependencies in the common run case meaning the sensitive context
* switch performance is consistent.
*/
struct vcpu *vcpu = vcpu_next_locked.vcpu;
struct vcpu *current = current_locked.vcpu;
/* The VM needs to be locked to deliver mailbox messages. */
need_vm_lock = vcpu->state == VCPU_STATE_WAITING ||
(!vcpu->vm->el0_partition &&
(vcpu->state == VCPU_STATE_BLOCKED_INTERRUPT ||
vcpu->state == VCPU_STATE_BLOCKED ||
vcpu->state == VCPU_STATE_PREEMPTED));
if (need_vm_lock) {
vcpu_unlock(&vcpu_next_locked);
vcpu_unlock(&current_locked);
vm_locked = vm_lock(vcpu->vm);
/* Lock both vCPUs at once to avoid deadlock. */
vcpus_locked = vcpu_lock_both(current, vcpu);
current_locked = vcpus_locked.vcpu1;
vcpu_next_locked = vcpus_locked.vcpu2;
}
/*
* If the vCPU is already running somewhere then we can't run it here
* simultaneously. While it is actually running then the state should be
* `VCPU_STATE_RUNNING` and `regs_available` should be false. Once it
* stops running but while Hafnium is in the process of switching back
* to the primary there will be a brief period while the state has been
* updated but `regs_available` is still false (until
* `api_regs_state_saved` is called). We can't start running it again
* until this has finished, so count this state as still running for the
* purposes of this check.
*/
if (vcpu->state == VCPU_STATE_RUNNING || !vcpu->regs_available) {
/*
* vCPU is running on another pCPU.
*
* It's okay not to return the sleep duration here because the
* other physical CPU that is currently running this vCPU will
* return the sleep duration if needed.
*/
*run_ret = ffa_error(FFA_BUSY);
ret = false;
goto out;
}
if (atomic_load_explicit(&vcpu->vm->aborting, memory_order_relaxed)) {
if (vcpu->state != VCPU_STATE_ABORTED) {
dlog_verbose("VM %#x was aborted, cannot run vCPU %u\n",
vcpu->vm->id, vcpu_index(vcpu));
vcpu->state = VCPU_STATE_ABORTED;
}
*run_ret = ffa_error(FFA_ABORTED);
ret = false;
goto out;
}
switch (vcpu->state) {
case VCPU_STATE_RUNNING:
case VCPU_STATE_OFF:
case VCPU_STATE_ABORTED:
ret = false;
goto out;
case VCPU_STATE_WAITING:
/*
* An initial FFA_RUN is necessary for SP's secondary vCPUs to
* reach the message wait loop.
*/
if (vcpu->rt_model == RTM_SP_INIT) {
/*
* TODO: this should be removed, but omitting it makes
* normal world arch gicv3 tests failing.
*/
vcpu->rt_model = RTM_NONE;
vcpu_was_init_state = true;
break;
}
assert(need_vm_lock == true);
if (!vm_locked.vm->el0_partition &&
plat_ffa_inject_notification_pending_interrupt(
vcpu_next_locked, current_locked, vm_locked)) {
/* TODO: setting a return value to override
* the placeholder (FFA_ERROR(INTERRUPTED))
* set by FFA_MSG_WAIT. FF-A v1.1 allows
* FFA_MSG_WAIT to successfully return even if
* it didn't receive a message. TFTF tests are
* still expecting an FFA_ERROR instead,
* should be fixed?
*/
arch_regs_set_retval(
&vcpu->regs,
(struct ffa_value){.func = FFA_RUN_32,
// TODO: does it make sense
// to set vCPU/receiver?
.arg1 = 0});
break;
}
/*
* A pending message allows the vCPU to run so the message can
* be delivered directly.
*/
if (vcpu->vm->mailbox.state == MAILBOX_STATE_FULL) {
arch_regs_set_retval(&vcpu->regs,
ffa_msg_recv_return(vcpu->vm));
break;
}
if (vcpu_interrupt_count_get(vcpu_next_locked) > 0) {
break;
}
if (arch_timer_enabled(&vcpu->regs)) {
timer_remaining_ns =
arch_timer_remaining_ns(&vcpu->regs);
if (timer_remaining_ns == 0) {
break;
}
} else {
dlog_verbose("Timer disabled\n");
}
run_ret->func = FFA_MSG_WAIT_32;
run_ret->arg1 = ffa_vm_vcpu(vcpu->vm->id, vcpu_index(vcpu));
run_ret->arg2 = timer_remaining_ns;
ret = false;
goto out;
case VCPU_STATE_BLOCKED_INTERRUPT:
if (need_vm_lock &&
plat_ffa_inject_notification_pending_interrupt(
vcpu_next_locked, current_locked, vm_locked)) {
assert(vcpu_interrupt_count_get(vcpu_next_locked) > 0);
break;
}
/* Allow virtual interrupts to be delivered. */
if (vcpu_interrupt_count_get(vcpu_next_locked) > 0) {
break;
}
if (arch_timer_enabled(&vcpu->regs)) {
timer_remaining_ns =
arch_timer_remaining_ns(&vcpu->regs);
/*
* The timer expired so allow the interrupt to be
* delivered.
*/
if (timer_remaining_ns == 0) {
break;
}
}
/*
* The vCPU is not ready to run, return the appropriate code to
* the primary which called vcpu_run.
*/
run_ret->func = HF_FFA_RUN_WAIT_FOR_INTERRUPT;
run_ret->arg1 = ffa_vm_vcpu(vcpu->vm->id, vcpu_index(vcpu));
run_ret->arg2 = timer_remaining_ns;
ret = false;
goto out;
case VCPU_STATE_BLOCKED:
/* A blocked vCPU is run unconditionally. Fall through. */
case VCPU_STATE_PREEMPTED:
/* Check NPI is to be injected here. */
if (need_vm_lock) {
plat_ffa_inject_notification_pending_interrupt(
vcpu_next_locked, current_locked, vm_locked);
}
break;
default:
/*
* Execution not expected to reach here. Deny the request
* gracefully.
*/
*run_ret = ffa_error(FFA_DENIED);
ret = false;
goto out;
}
plat_ffa_init_schedule_mode_ffa_run(current_locked, vcpu_next_locked);
/* It has been decided that the vCPU should be run. */
vcpu->cpu = current_locked.vcpu->cpu;
vcpu->state = VCPU_STATE_RUNNING;
if (vcpu_was_init_state) {
vcpu_set_phys_core_idx(vcpu);
vcpu_set_boot_info_gp_reg(vcpu);
}
/*
* Mark the registers as unavailable now that we're about to reflect
* them onto the real registers. This will also prevent another physical
* CPU from trying to read these registers.
*/
vcpu->regs_available = false;
ret = true;
out:
if (need_vm_lock) {
vm_unlock(&vm_locked);
}
return ret;
}
struct ffa_value api_ffa_run(ffa_id_t vm_id, ffa_vcpu_index_t vcpu_idx,
struct vcpu *current, struct vcpu **next)
{
struct vm *vm;
struct vcpu *vcpu;
struct ffa_value ret = ffa_error(FFA_INVALID_PARAMETERS);
enum vcpu_state next_state = VCPU_STATE_RUNNING;
struct vcpu_locked current_locked;
struct vcpu_locked vcpu_next_locked;
struct two_vcpu_locked vcpus_locked;
current_locked = vcpu_lock(current);
if (!plat_ffa_run_checks(current_locked, vm_id, vcpu_idx, &ret, next)) {
goto out;
}
if (plat_ffa_run_forward(vm_id, vcpu_idx, &ret)) {
goto out;
}
/* The requested VM must exist. */
vm = vm_find(vm_id);
if (vm == NULL) {
goto out;
}
/* The requested vCPU must exist. */
if (vcpu_idx >= vm->vcpu_count) {
goto out;
}
/*
* Refer Figure 8.13 Scenario 1 of the FF-A v1.1 EAC spec. SPMC
* bypasses the intermediate execution contexts and resumes the
* SP execution context that was originally preempted.
*/
if (*next != NULL) {
vcpu = *next;
} else {
vcpu = vm_get_vcpu(vm, vcpu_idx);
}
/*
* Unlock current vCPU to allow it to be locked together with next
* vcpu.
*/
vcpu_unlock(&current_locked);
/* Lock both vCPUs at once to avoid deadlock. */
vcpus_locked = vcpu_lock_both(current, vcpu);
current_locked = vcpus_locked.vcpu1;
vcpu_next_locked = vcpus_locked.vcpu2;
if (!plat_ffa_check_runtime_state_transition(
current_locked, current->vm->id, HF_INVALID_VM_ID,
vcpu_next_locked, FFA_RUN_32, &next_state)) {
ret = ffa_error(FFA_DENIED);
goto out_vcpu;
}
if (!api_vcpu_prepare_run(current_locked, vcpu_next_locked, &ret)) {
goto out_vcpu;
}
/*
* Inject timer interrupt if timer has expired. It's safe to access
* vcpu->regs here because api_vcpu_prepare_run already made sure that
* regs_available was true (and then set it to false) before returning
* true.
*/
if (arch_timer_pending(&vcpu->regs)) {
/* Make virtual timer interrupt pending. */
api_interrupt_inject_locked(vcpu_next_locked,
HF_VIRTUAL_TIMER_INTID,
vcpu_next_locked, NULL);
/*
* Set the mask bit so the hardware interrupt doesn't fire
* again. Ideally we wouldn't do this because it affects what
* the secondary vCPU sees, but if we don't then we end up with
* a loop of the interrupt firing each time we try to return to
* the secondary vCPU.
*/
arch_timer_mask(&vcpu->regs);
}
/* Switch to the vCPU. */
*next = vcpu;
assert(!vm_id_is_current_world(current->vm->id) ||
next_state == VCPU_STATE_BLOCKED);
current->state = VCPU_STATE_BLOCKED;
/*
* Set a placeholder return code to the scheduler. This will be
* overwritten when the switch back to the primary occurs.
*/
ret.func = FFA_INTERRUPT_32;
ret.arg1 = 0;
ret.arg2 = 0;
out_vcpu:
vcpu_unlock(&vcpu_next_locked);
out:
vcpu_unlock(&current_locked);
return ret;
}
/**
* Check that the mode indicates memory that is valid, owned and exclusive.
*/
static bool api_mode_valid_owned_and_exclusive(uint32_t mode)
{
return (mode & (MM_MODE_D | MM_MODE_INVALID | MM_MODE_UNOWNED |
MM_MODE_SHARED)) == 0;
}
/**
* Configures the hypervisor's stage-1 view of the send and receive pages.
*/
static struct ffa_value api_vm_configure_stage1(
struct mm_stage1_locked mm_stage1_locked, struct vm_locked vm_locked,
paddr_t pa_send_begin, paddr_t pa_send_end, paddr_t pa_recv_begin,
paddr_t pa_recv_end, uint32_t extra_attributes,
struct mpool *local_page_pool)
{
struct ffa_value ret;
/*
* Map the send page as read-only in the SPMC/hypervisor address space.
*/
vm_locked.vm->mailbox.send =
mm_identity_map(mm_stage1_locked, pa_send_begin, pa_send_end,
MM_MODE_R | extra_attributes, local_page_pool);
if (!vm_locked.vm->mailbox.send) {
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
/*
* Map the receive page as writable in the SPMC/hypervisor address
* space. On failure, unmap the send page before returning.
*/
vm_locked.vm->mailbox.recv =
mm_identity_map(mm_stage1_locked, pa_recv_begin, pa_recv_end,
MM_MODE_W | extra_attributes, local_page_pool);
if (!vm_locked.vm->mailbox.recv) {
ret = ffa_error(FFA_NO_MEMORY);
goto fail_undo_send;
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
goto out;
/*
* The following mappings will not require more memory than is available
* in the local pool.
*/
fail_undo_send:
vm_locked.vm->mailbox.send = NULL;
CHECK(mm_unmap(mm_stage1_locked, pa_send_begin, pa_send_end,
local_page_pool));
out:
return ret;
}
/**
* Sanity checks and configures the send and receive pages in the VM stage-2
* and hypervisor stage-1 page tables.
*
* Returns:
* - FFA_ERROR FFA_INVALID_PARAMETERS if the given addresses are not properly
* aligned, are the same or have invalid attributes.
* - FFA_ERROR FFA_NO_MEMORY if the hypervisor was unable to map the buffers
* due to insuffient page table memory.
* - FFA_ERROR FFA_DENIED if the pages are already mapped.
* - FFA_SUCCESS on success if no further action is needed.
*/
struct ffa_value api_vm_configure_pages(
struct mm_stage1_locked mm_stage1_locked, struct vm_locked vm_locked,
ipaddr_t send, ipaddr_t recv, uint32_t page_count,
struct mpool *local_page_pool)
{
struct ffa_value ret;
paddr_t pa_send_begin;
paddr_t pa_send_end;
paddr_t pa_recv_begin;
paddr_t pa_recv_end;
uint32_t orig_send_mode = 0;
uint32_t orig_recv_mode = 0;
uint32_t extra_attributes;
/* We only allow these to be setup once. */
if (vm_locked.vm->mailbox.send || vm_locked.vm->mailbox.recv) {
dlog_error("%s: Mailboxes have already been setup for VM %#x\n",
__func__, vm_locked.vm->id);
ret = ffa_error(FFA_DENIED);
goto out;
}
/* Hafnium only supports a fixed size of RX/TX buffers. */
if (page_count != HF_MAILBOX_SIZE / FFA_PAGE_SIZE) {
dlog_error("%s: Page count must be %d, it is %d\n", __func__,
HF_MAILBOX_SIZE / FFA_PAGE_SIZE, page_count);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/* Fail if addresses are not page-aligned. */
if (!is_aligned(ipa_addr(send), PAGE_SIZE) ||
!is_aligned(ipa_addr(recv), PAGE_SIZE)) {
dlog_error("%s: Mailbox buffers not page-aligned\n", __func__);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/* Convert to physical addresses. */
pa_send_begin = pa_from_ipa(send);
pa_send_end = pa_add(pa_send_begin, HF_MAILBOX_SIZE);
pa_recv_begin = pa_from_ipa(recv);
pa_recv_end = pa_add(pa_recv_begin, HF_MAILBOX_SIZE);
/* Fail if the same page is used for the send and receive pages. */
if (pa_addr(pa_send_begin) == pa_addr(pa_recv_begin)) {
dlog_error("%s: Mailbox buffers overlap\n", __func__);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/* Set stage 2 translation tables only for virtual FF-A instances. */
if (vm_id_is_current_world(vm_locked.vm->id)) {
/*
* Ensure the pages are valid, owned and exclusive to the VM and
* that the VM has the required access to the memory.
*/
if (!vm_mem_get_mode(vm_locked, send, ipa_add(send, PAGE_SIZE),
&orig_send_mode) ||
!api_mode_valid_owned_and_exclusive(orig_send_mode) ||
(orig_send_mode & MM_MODE_R) == 0 ||
(orig_send_mode & MM_MODE_W) == 0) {
dlog_error(
"VM doesn't have required access rights to map "
"TX buffer in stage 2.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!vm_mem_get_mode(vm_locked, recv, ipa_add(recv, PAGE_SIZE),
&orig_recv_mode) ||
!api_mode_valid_owned_and_exclusive(orig_recv_mode) ||
(orig_recv_mode & MM_MODE_R) == 0) {
dlog_error(
"VM doesn't have required access rights to map "
"RX buffer in stage 2.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/* Take memory ownership away from the VM and mark as shared. */
uint32_t mode = MM_MODE_UNOWNED | MM_MODE_SHARED | MM_MODE_R |
MM_MODE_W;
if (vm_locked.vm->el0_partition) {
mode |= MM_MODE_USER | MM_MODE_NG;
}
if (!vm_identity_map(vm_locked, pa_send_begin, pa_send_end,
mode, local_page_pool, NULL)) {
dlog_error(
"Cannot allocate a new entry in stage 2 "
"translation table.\n");
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
mode = MM_MODE_UNOWNED | MM_MODE_SHARED | MM_MODE_R;
if (vm_locked.vm->el0_partition) {
mode |= MM_MODE_USER | MM_MODE_NG;
}
if (!vm_identity_map(vm_locked, pa_recv_begin, pa_recv_end,
mode, local_page_pool, NULL)) {
/* TODO: partial defrag of failed range. */
/* Recover any memory consumed in failed mapping. */
dlog_error("%s: cannot map recv page\n", __func__);
vm_ptable_defrag(vm_locked, local_page_pool);
ret = ffa_error(FFA_NO_MEMORY);
goto fail_undo_send;
}
} else {
ret = arch_other_world_vm_configure_rxtx_map(
vm_locked, local_page_pool, pa_send_begin, pa_send_end,
pa_recv_begin, pa_recv_end);
if (ret.func != FFA_SUCCESS_32) {
goto out;
}
}
/* Get extra send/recv pages mapping attributes for the given VM ID. */
extra_attributes = arch_mm_extra_attributes_from_vm(vm_locked.vm->id);
/*
* For EL0 partitions, since both the partition and the hypervisor code
* use the EL2&0 translation regime, it is critical to mark the mappings
* of the send and recv buffers as non-global in the TLB. For one, if we
* dont mark it as non-global, it would cause TLB conflicts since there
* would be an identity mapping with non-global attribute in the
* partitions page tables, but another identity mapping in the
* hypervisor page tables with the global attribute. The other issue is
* one of security, we dont want other partitions to be able to access
* other partitions buffers through cached translations.
*/
if (vm_locked.vm->el0_partition) {
extra_attributes |= MM_MODE_NG;
}
ret = api_vm_configure_stage1(
mm_stage1_locked, vm_locked, pa_send_begin, pa_send_end,
pa_recv_begin, pa_recv_end, extra_attributes, local_page_pool);
if (ret.func != FFA_SUCCESS_32) {
goto fail_undo_send_and_recv;
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
goto out;
fail_undo_send_and_recv:
CHECK(vm_identity_map(vm_locked, pa_recv_begin, pa_recv_end,
orig_recv_mode, local_page_pool, NULL));
fail_undo_send:
CHECK(vm_identity_map(vm_locked, pa_send_begin, pa_send_end,
orig_send_mode, local_page_pool, NULL));
out:
return ret;
}
/**
* Read the buffer addresses and VM ID of an FFA_RXTX_MAP request. Handles
* forwarded messages by reading from the hypervisor's TX buffer.
*
* Returns the VM/SP ID on success.
*
* Returns `HF_INVALID_VM_ID` when the arguments provided via the ABI
* FFA_RXTX_MAP indicate the SPMC should retrieve the RXTX description from the
* Hypervisor RXTX buffers, and the hypervisor hasn't given its own RXTX buffers
* for the SPMC to map.
*/
static ffa_id_t api_get_rxtx_description(struct vm *current_vm, ipaddr_t *send,
ipaddr_t *recv, uint32_t *page_count)
{
bool forwarded;
struct vm_locked vm_locked;
ffa_id_t owner_vm_id;
struct ffa_endpoint_rx_tx_descriptor *endpoint_desc;
struct ffa_composite_memory_region *rx_region;
struct ffa_composite_memory_region *tx_region;
/*
* If the message has been forwarded the effective addresses are in
* hypervisor's TX buffer.
*/
forwarded = (current_vm->id == HF_OTHER_WORLD_ID) &&
(ipa_addr(*send) == 0) && (ipa_addr(*recv) == 0) &&
(*page_count == 0);
if (forwarded) {
vm_locked = vm_lock(current_vm);
endpoint_desc = (struct ffa_endpoint_rx_tx_descriptor *)
vm_locked.vm->mailbox.send;
if (endpoint_desc == NULL) {
dlog_error(
"Trying to access RXTX description, but "
"hypervisor has not provided RXTX buffers\n");
vm_unlock(&vm_locked);
return HF_INVALID_VM_ID;
}
rx_region = ffa_endpoint_get_rx_memory_region(endpoint_desc);
tx_region = ffa_endpoint_get_tx_memory_region(endpoint_desc);
owner_vm_id = endpoint_desc->endpoint_id;
*recv = ipa_init(rx_region->constituents[0].address);
*send = ipa_init(tx_region->constituents[0].address);
*page_count = rx_region->constituents[0].page_count;
vm_unlock(&vm_locked);
} else {
owner_vm_id = current_vm->id;
}
return owner_vm_id;
}
/**
* Configures the VM to send/receive data through the specified pages. The pages
* must not be shared. Locking of the page tables combined with a local memory
* pool ensures there will always be enough memory to recover from any errors
* that arise. The stage-1 page tables must be locked so memory cannot be taken
* by another core which could result in this transaction being unable to roll
* back in the case of an error.
*
* Returns:
* - FFA_ERROR FFA_INVALID_PARAMETERS if the given addresses are not properly
* aligned, are the same or have invalid attributes.
* - FFA_ERROR FFA_NO_MEMORY if the hypervisor was unable to map the buffers
* due to insuffient page table memory.
* - FFA_ERROR FFA_DENIED if the pages are already mapped.
* - FFA_SUCCESS on success if no further action is needed.
*/
struct ffa_value api_ffa_rxtx_map(ipaddr_t send, ipaddr_t recv,
uint32_t page_count, struct vcpu *current)
{
struct ffa_value ret;
struct vm_locked owner_vm_locked;
struct mm_stage1_locked mm_stage1_locked;
struct mpool local_page_pool;
ffa_id_t owner_vm_id;
/*
* Get the original buffer addresses and VM ID in case of forwarded
* message.
*/
owner_vm_id = api_get_rxtx_description(current->vm, &send, &recv,
&page_count);
if (owner_vm_id == HF_INVALID_VM_ID) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
owner_vm_locked = plat_ffa_vm_find_locked_create(owner_vm_id);
if (owner_vm_locked.vm == NULL) {
dlog_error("Cannot map RX/TX for VM ID %#x, not found.\n",
owner_vm_id);
return ffa_error(FFA_DENIED);
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if any
* stage of the process fails.
*/
mpool_init_with_fallback(&local_page_pool, &api_page_pool);
mm_stage1_locked = mm_lock_stage1();
ret = api_vm_configure_pages(mm_stage1_locked, owner_vm_locked, send,
recv, page_count, &local_page_pool);
if (ret.func != FFA_SUCCESS_32) {
goto exit;
}
/* Forward buffer mapping to SPMC if coming from a VM. */
plat_ffa_rxtx_map_forward(owner_vm_locked);
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
exit:
mpool_fini(&local_page_pool);
mm_unlock_stage1(&mm_stage1_locked);
vm_unlock(&owner_vm_locked);
return ret;
}
/**
* Unmaps the RX/TX buffer pair with a partition or partition manager from the
* translation regime of the caller. Unmap the region for the hypervisor and
* set the memory region to owned and exclusive for the component. Since the
* memory region mapped in the page table, when the buffers were originally
* created we can safely remap it.
*
* Returns:
* - FFA_ERROR FFA_INVALID_PARAMETERS if there is no buffer pair registered on
* behalf of the caller.
* - FFA_SUCCESS on success if no further action is needed.
*/
struct ffa_value api_ffa_rxtx_unmap(ffa_id_t allocator_id, struct vcpu *current)
{
struct vm *vm = current->vm;
struct vm_locked vm_locked;
ffa_id_t owner_vm_id;
struct mm_stage1_locked mm_stage1_locked;
paddr_t send_pa_begin;
paddr_t send_pa_end;
paddr_t recv_pa_begin;
paddr_t recv_pa_end;
struct ffa_value ret = (struct ffa_value){.func = FFA_SUCCESS_32};
if (vm->id == HF_HYPERVISOR_VM_ID && !ffa_is_vm_id(allocator_id)) {
dlog_verbose(
"The Hypervisor must specify a valid VM ID in register "
"W1, if FFA_RXTX_UNMAP call forwarded to SPM.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* Ensure `allocator_id` is set only at Non-Secure Physical instance. */
if (vm_id_is_current_world(vm->id) && (allocator_id != 0)) {
dlog_error(
"The register W1 (containing ID) must be 0 at virtual "
"instances.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* VM ID of which buffers have to be unmapped. */
owner_vm_id = (allocator_id != 0) ? allocator_id : vm->id;
vm_locked = plat_ffa_vm_find_locked(owner_vm_id);
vm = vm_locked.vm;
if (vm == NULL) {
dlog_error("Cannot unmap RX/TX for VM ID %#x, not found.\n",
owner_vm_id);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* Get send and receive buffers. */
if (vm->mailbox.send == NULL || vm->mailbox.recv == NULL) {
dlog_verbose(
"No buffer pair registered on behalf of the caller.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/* Currently a mailbox size of 1 page is assumed. */
send_pa_begin = pa_from_va(va_from_ptr(vm->mailbox.send));
send_pa_end = pa_add(send_pa_begin, HF_MAILBOX_SIZE);
recv_pa_begin = pa_from_va(va_from_ptr(vm->mailbox.recv));
recv_pa_end = pa_add(recv_pa_begin, HF_MAILBOX_SIZE);
mm_stage1_locked = mm_lock_stage1();
/* Reset stage 2 mapping only for virtual FF-A instances. */
if (vm_id_is_current_world(owner_vm_id)) {
/*
* Set the memory region of the buffers back to the default mode
* for the VM. Since this memory region was already mapped for
* the RXTX buffers we can safely remap them.
*/
CHECK(vm_identity_map(vm_locked, send_pa_begin, send_pa_end,
MM_MODE_R | MM_MODE_W | MM_MODE_X,
&api_page_pool, NULL));
CHECK(vm_identity_map(vm_locked, recv_pa_begin, recv_pa_end,
MM_MODE_R | MM_MODE_W | MM_MODE_X,
&api_page_pool, NULL));
} else {
ret = arch_other_world_vm_configure_rxtx_unmap(
vm_locked, &api_page_pool, send_pa_begin, send_pa_end,
recv_pa_begin, recv_pa_end);
if (ret.func != FFA_SUCCESS_32) {
goto out;
}
}
/* Unmap the buffers in the partition manager. */
CHECK(mm_unmap(mm_stage1_locked, send_pa_begin, send_pa_end,
&api_page_pool));
CHECK(mm_unmap(mm_stage1_locked, recv_pa_begin, recv_pa_end,
&api_page_pool));
vm->mailbox.send = NULL;
vm->mailbox.recv = NULL;
plat_ffa_vm_destroy(vm_locked);
/* Forward buffer unmapping to SPMC if coming from a VM. */
plat_ffa_rxtx_unmap_forward(vm_locked);
mm_unlock_stage1(&mm_stage1_locked);
out:
vm_unlock(&vm_locked);
return ret;
}
/**
* Copies data from the sender's send buffer to the recipient's receive buffer
* and notifies the receiver.
*/
struct ffa_value api_ffa_msg_send2(ffa_id_t sender_vm_id, uint32_t flags,
struct vcpu *current)
{
struct vm *from = current->vm;
struct vm *to;
struct vm_locked to_locked;
ffa_id_t msg_sender_id;
struct vm_locked sender_locked;
const void *from_msg;
struct ffa_value ret;
struct ffa_partition_rxtx_header header;
ffa_id_t sender_id;
ffa_id_t receiver_id;
uint32_t msg_size;
ffa_notifications_bitmap_t rx_buffer_full;
/* Only Hypervisor can set `sender_vm_id` when forwarding messages. */
if (from->id != HF_HYPERVISOR_VM_ID && sender_vm_id != 0) {
dlog_error("Sender VM ID must be zero.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Get message sender's mailbox, which can be different to the `from` vm
* when the message is forwarded.
*/
msg_sender_id = (sender_vm_id != 0) ? sender_vm_id : from->id;
sender_locked = plat_ffa_vm_find_locked(msg_sender_id);
if (sender_locked.vm == NULL) {
dlog_error("Cannot send message from VM ID %#x, not found.\n",
msg_sender_id);
return ffa_error(FFA_DENIED);
}
from_msg = sender_locked.vm->mailbox.send;
if (from_msg == NULL) {
dlog_error("Cannot retrieve TX buffer for VM ID %#x.\n",
msg_sender_id);
ret = ffa_error(FFA_DENIED);
goto out_unlock_sender;
}
/*
* Copy message header as safety measure to avoid multiple accesses to
* unsafe memory which could be 'corrupted' between safety checks and
* final buffer copy.
*/
memcpy_s(&header, FFA_RXTX_HEADER_SIZE, from_msg, FFA_RXTX_HEADER_SIZE);
sender_id = ffa_rxtx_header_sender(&header);
receiver_id = ffa_rxtx_header_receiver(&header);
/* Ensure Sender IDs from API and from message header match. */
if (msg_sender_id != sender_id) {
dlog_error(
"Message sender VM ID (%#x) doesn't match header's VM "
"ID (%#x).\n",
msg_sender_id, sender_id);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_unlock_sender;
}
/* Disallow reflexive requests as this suggests an error in the VM. */
if (receiver_id == sender_id) {
dlog_error("Sender and receive VM IDs must be different.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_unlock_sender;
}
/* `flags` can be set only at secure virtual FF-A instances. */
if (ffa_is_vm_id(sender_id) && (flags != 0)) {
dlog_error("flags must be zero.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (header.offset != FFA_RXTX_HEADER_SIZE) {
dlog_error("Indirect msg payload must follow the header.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Check if the message has to be forwarded to the SPMC, in
* this case return, the SPMC will handle the buffer copy.
*/
if (plat_ffa_msg_send2_forward(receiver_id, sender_id, &ret)) {
goto out_unlock_sender;
}
/* Ensure the receiver VM exists. */
to_locked = plat_ffa_vm_find_locked(receiver_id);
to = to_locked.vm;
if (to == NULL) {
dlog_error("Cannot deliver message to VM %#x, not found.\n",
receiver_id);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_unlock_sender;
}
/*
* Check sender and receiver can use indirect messages.
* Sender is the VM/SP who originally sent the message, not the
* hypervisor possibly relaying it.
*/
if (!plat_ffa_is_indirect_msg_supported(sender_locked, to_locked)) {
dlog_verbose("VM %#x doesn't support indirect message\n",
sender_id);
ret = ffa_error(FFA_DENIED);
goto out;
}
if (vm_is_mailbox_busy(to_locked)) {
dlog_error(
"Cannot deliver message to VM %#x, RX buffer not "
"ready.\n",
receiver_id);
ret = ffa_error(FFA_BUSY);
goto out;
}
/* Acquire receiver's RX buffer. */
if (!plat_ffa_acquire_receiver_rx(to_locked, &ret)) {
dlog_error("Failed to acquire RX buffer for VM %#x\n", to->id);
goto out;
}
/* Check the size of transfer. */
msg_size = FFA_RXTX_HEADER_SIZE + header.size;
if ((msg_size > FFA_MSG_PAYLOAD_MAX) ||
(header.size > FFA_PARTITION_MSG_PAYLOAD_MAX)) {
dlog_error("Message is too big.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/* Copy data. */
memcpy_s(to->mailbox.recv, FFA_MSG_PAYLOAD_MAX, from_msg, msg_size);
to->mailbox.recv_size = msg_size;
to->mailbox.recv_sender = sender_id;
to->mailbox.recv_func = FFA_MSG_SEND2_32;
to->mailbox.state = MAILBOX_STATE_FULL;
rx_buffer_full = ffa_is_vm_id(sender_id)
? FFA_NOTIFICATION_HYP_BUFFER_FULL_MASK
: FFA_NOTIFICATION_SPM_BUFFER_FULL_MASK;
vm_notifications_framework_set_pending(to_locked, rx_buffer_full);
if ((FFA_NOTIFICATIONS_FLAG_DELAY_SRI & flags) == 0) {
dlog_verbose("SRI was NOT delayed. vcpu: %u!\n",
vcpu_index(current));
plat_ffa_sri_trigger_not_delayed(current->cpu);
} else {
plat_ffa_sri_state_set(DELAYED);
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
vm_unlock(&to_locked);
out_unlock_sender:
vm_unlock(&sender_locked);
return ret;
}
/**
* Releases the caller's mailbox so that a new message can be received. The
* caller must have copied out all data they wish to preserve as new messages
* will overwrite the old and will arrive asynchronously.
*
* Returns:
* - FFA_ERROR FFA_INVALID_PARAMETERS if message is forwarded to SPMC but
* there's no buffer pair mapped.
* - FFA_ERROR FFA_DENIED on failure, if the mailbox hasn't been read.
* - FFA_SUCCESS on success if no further action is needed.
* - FFA_RX_RELEASE if it was called by the primary VM and the primary VM now
* needs to wake up or kick waiters. Waiters should be retrieved by calling
* hf_mailbox_waiter_get.
*/
struct ffa_value api_ffa_rx_release(ffa_id_t receiver_id, struct vcpu *current)
{
struct vm *current_vm = current->vm;
struct vm *vm;
struct vm_locked vm_locked;
ffa_id_t current_vm_id = current_vm->id;
ffa_id_t release_vm_id;
struct ffa_value ret;
int32_t error_code;
/* `receiver_id` can be set only at Non-Secure Physical interface. */
if (vm_id_is_current_world(current_vm_id) && (receiver_id != 0)) {
dlog_error("Invalid `receiver_id`, must be zero.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* VM ID to be released: `receiver_id` if message has been forwarded by
* Hypervisor to release a VM's buffer, current VM ID otherwise.
*/
if (vm_id_is_current_world(current_vm_id) || (receiver_id == 0)) {
release_vm_id = current_vm_id;
} else {
release_vm_id = receiver_id;
}
vm_locked = plat_ffa_vm_find_locked(release_vm_id);
vm = vm_locked.vm;
if (vm == NULL) {
dlog_error("No buffer registered for VM ID %#x.\n",
release_vm_id);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (plat_ffa_rx_release_forward(vm_locked, &ret)) {
goto out;
}
if (!api_release_mailbox(vm_locked, &error_code)) {
ret = ffa_error(error_code);
goto out;
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
vm_unlock(&vm_locked);
return ret;
}
/**
* Acquire ownership of an RX buffer before writing to it. Both
* Hypervisor and SPMC are producers of VM's RX buffer, and they
* could contend for the same buffer. SPMC owns VM's RX buffer after
* it's mapped in its translation regime. This ABI should be
* used by the Hypervisor to get the ownership of a VM's RX buffer
* from the SPMC solving the aforementioned possible contention.
*
* Returns:
* - FFA_DENIED: callee cannot relinquish ownership of RX buffer.
* - FFA_INVALID_PARAMETERS: there is no buffer pair registered for the VM.
* - FFA_NOT_SUPPORTED: function not implemented at the FF-A instance.
*/
struct ffa_value api_ffa_rx_acquire(ffa_id_t receiver_id, struct vcpu *current)
{
struct vm_locked receiver_locked;
struct vm *receiver;
struct ffa_value ret;
if ((current->vm->id != HF_HYPERVISOR_VM_ID) ||
!ffa_is_vm_id(receiver_id)) {
dlog_error(
"FFA_RX_ACQUIRE not supported at this FF-A "
"instance.\n");
return ffa_error(FFA_NOT_SUPPORTED);
}
receiver_locked = plat_ffa_vm_find_locked(receiver_id);
receiver = receiver_locked.vm;
if (receiver == NULL || receiver->mailbox.recv == NULL) {
dlog_error("Cannot retrieve RX buffer for VM ID %#x.\n",
receiver_id);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (receiver->mailbox.state != MAILBOX_STATE_EMPTY) {
dlog_error("Mailbox busy for VM ID %#x.\n", receiver_id);
ret = ffa_error(FFA_DENIED);
goto out;
}
receiver->mailbox.state = MAILBOX_STATE_OTHER_WORLD_OWNED;
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
vm_unlock(&receiver_locked);
return ret;
}
/**
* Enables or disables a given interrupt ID for the calling vCPU.
*
* Returns 0 on success, or -1 if the intid is invalid.
*/
int64_t api_interrupt_enable(uint32_t intid, bool enable,
enum interrupt_type type, struct vcpu *current)
{
struct vcpu_locked current_locked;
struct interrupts *interrupts = &current->interrupts;
if (intid >= HF_NUM_INTIDS) {
return -1;
}
current_locked = vcpu_lock(current);
if (enable) {
/*
* If it is pending and was not enabled before, increment the
* count.
*/
if (vcpu_is_virt_interrupt_pending(interrupts, intid) &&
!vcpu_is_virt_interrupt_enabled(interrupts, intid)) {
vcpu_interrupt_count_increment(current_locked,
interrupts, intid);
}
vcpu_virt_interrupt_set_enabled(interrupts, intid);
vcpu_virt_interrupt_set_type(interrupts, intid, type);
} else {
/*
* If it is pending and was enabled before, decrement the count.
*/
if (vcpu_is_virt_interrupt_pending(interrupts, intid) &&
vcpu_is_virt_interrupt_enabled(interrupts, intid)) {
vcpu_interrupt_count_decrement(current_locked,
interrupts, intid);
}
vcpu_virt_interrupt_clear_enabled(interrupts, intid);
vcpu_virt_interrupt_set_type(interrupts, intid,
INTERRUPT_TYPE_IRQ);
}
vcpu_unlock(&current_locked);
return 0;
}
static void api_interrupt_clear_decrement(struct vcpu_locked locked_vcpu,
struct interrupts *interrupts,
uint32_t intid)
{
vcpu_virt_interrupt_clear_pending(interrupts, intid);
vcpu_interrupt_count_decrement(locked_vcpu, interrupts, intid);
}
/**
* Returns the ID of the next pending interrupt for the calling vCPU, and
* acknowledges it (i.e. marks it as no longer pending). Returns
* HF_INVALID_INTID if there are no pending interrupts.
*/
uint32_t api_interrupt_get(struct vcpu *current)
{
uint32_t i;
uint32_t first_interrupt = HF_INVALID_INTID;
struct vcpu_locked current_locked;
struct interrupts *interrupts = &current->interrupts;
/*
* Find the first enabled and pending interrupt ID, return it, and
* deactivate it.
*/
current_locked = vcpu_lock(current);
for (i = 0; i < HF_NUM_INTIDS / INTERRUPT_REGISTER_BITS; ++i) {
uint32_t enabled_and_pending =
interrupts->interrupt_enabled.bitmap[i] &
interrupts->interrupt_pending.bitmap[i];
if (enabled_and_pending != 0) {
uint8_t bit_index = ctz(enabled_and_pending);
first_interrupt =
i * INTERRUPT_REGISTER_BITS + bit_index;
/*
* Mark it as no longer pending and decrement the count.
*/
api_interrupt_clear_decrement(
current_locked, interrupts, first_interrupt);
break;
}
}
vcpu_unlock(&current_locked);
return first_interrupt;
}
/**
* Returns whether the current vCPU is allowed to inject an interrupt into the
* given VM and vCPU.
*/
static inline bool is_injection_allowed(uint32_t target_vm_id,
struct vcpu *current)
{
uint32_t current_vm_id = current->vm->id;
/*
* The primary VM is allowed to inject interrupts into any VM. Secondary
* VMs are only allowed to inject interrupts into their own vCPUs.
*/
return current_vm_id == HF_PRIMARY_VM_ID ||
current_vm_id == target_vm_id;
}
/**
* Injects a virtual interrupt of the given ID into the given target vCPU.
* This doesn't cause the vCPU to actually be run immediately; it will be taken
* when the vCPU is next run, which is up to the scheduler.
*
* Returns:
* - -1 on failure because the target VM or vCPU doesn't exist, the interrupt
* ID is invalid, or the current VM is not allowed to inject interrupts to
* the target VM.
* - 0 on success if no further action is needed.
* - 1 if it was called by the primary VM and the primary VM now needs to wake
* up or kick the target vCPU.
*/
int64_t api_interrupt_inject(ffa_id_t target_vm_id,
ffa_vcpu_index_t target_vcpu_idx, uint32_t intid,
struct vcpu *current, struct vcpu **next)
{
struct vcpu *target_vcpu;
struct vm *target_vm = vm_find(target_vm_id);
struct vcpu_locked current_locked;
struct vcpu_locked target_locked;
struct two_vcpu_locked vcpus_locked;
int64_t ret;
if (intid >= HF_NUM_INTIDS) {
return -1;
}
if (target_vm == NULL) {
return -1;
}
if (target_vcpu_idx >= target_vm->vcpu_count) {
/* The requested vCPU must exist. */
return -1;
}
if (!is_injection_allowed(target_vm_id, current)) {
return -1;
}
target_vcpu = vm_get_vcpu(target_vm, target_vcpu_idx);
/* A VM could inject an interrupt for itself. */
if (target_vcpu != current) {
/* Lock both vCPUs at once to avoid deadlock. */
vcpus_locked = vcpu_lock_both(current, target_vcpu);
current_locked = vcpus_locked.vcpu1;
target_locked = vcpus_locked.vcpu2;
} else {
current_locked = vcpu_lock(current);
target_locked = current_locked;
}
dlog_verbose(
"Injecting interrupt %u for VM %#x vCPU %u from VM %#x vCPU "
"%u\n",
intid, target_vm_id, target_vcpu_idx, current->vm->id,
vcpu_index(current));
ret = api_interrupt_inject_locked(target_locked, intid, current_locked,
next);
if (target_vcpu != current) {
vcpu_unlock(&target_locked);
}
vcpu_unlock(&current_locked);
return ret;
}
/** Returns the version of the implemented FF-A specification. */
struct ffa_value api_ffa_version(struct vcpu *current,
uint32_t requested_version)
{
struct vm_locked current_vm_locked;
/*
* Ensure that both major and minor revision representation occupies at
* most 15 bits.
*/
static_assert(0x8000 > FFA_VERSION_MAJOR,
"Major revision representation takes more than 15 bits.");
static_assert(0x10000 > FFA_VERSION_MINOR,
"Minor revision representation takes more than 16 bits.");
if (requested_version & FFA_VERSION_RESERVED_BIT) {
/* Invalid encoding, return an error. */
return (struct ffa_value){.func = (uint32_t)FFA_NOT_SUPPORTED};
}
if ((requested_version >> FFA_VERSION_MAJOR_OFFSET) !=
FFA_VERSION_MAJOR ||
requested_version > FFA_VERSION_COMPILED) {
dlog_verbose("Version %x incompatible with %x\n",
requested_version, FFA_VERSION_COMPILED);
return (struct ffa_value){.func = (uint32_t)FFA_NOT_SUPPORTED};
}
current_vm_locked = vm_lock(current->vm);
current_vm_locked.vm->ffa_version = requested_version;
vm_unlock(&current_vm_locked);
return ((struct ffa_value){.func = FFA_VERSION_COMPILED});
}
/**
* Helper for success return of FFA_FEATURES, for when it is used to query
* an interrupt ID.
*/
struct ffa_value api_ffa_feature_success(uint32_t arg2)
{
return (struct ffa_value){
.func = FFA_SUCCESS_32, .arg1 = 0U, .arg2 = arg2};
}
/**
* Discovery function returning information about the implementation of optional
* FF-A interfaces.
*/
struct ffa_value api_ffa_features(uint32_t feature_function_id,
uint32_t input_property, struct vcpu *current)
{
const uint32_t ffa_version = current->vm->ffa_version;
const bool el0_partition = current->vm->el0_partition;
/*
* According to table 13.8 of FF-A v1.1 Beta 0 spec, bits [30:8] MBZ
* if using a feature ID.
*/
if ((feature_function_id & FFA_FEATURES_FUNC_ID_MASK) == 0U &&
(feature_function_id & ~FFA_FEATURES_FEATURE_ID_MASK) != 0U) {
return ffa_error(FFA_NOT_SUPPORTED);
}
if (feature_function_id != FFA_MEM_RETRIEVE_REQ_32 &&
input_property != 0U) {
dlog_verbose(
"input_property must be zero.\ninput_property = %u.\n",
input_property);
return ffa_error(FFA_INVALID_PARAMETERS);
}
switch (feature_function_id) {
/* Check support of the given Function ID. */
case FFA_ERROR_32:
case FFA_SUCCESS_32:
case FFA_INTERRUPT_32:
case FFA_VERSION_32:
case FFA_FEATURES_32:
case FFA_RX_RELEASE_32:
case FFA_RXTX_UNMAP_32:
case FFA_PARTITION_INFO_GET_32:
case FFA_ID_GET_32:
case FFA_MSG_WAIT_32:
case FFA_RUN_32:
case FFA_MEM_DONATE_32:
case FFA_MEM_LEND_32:
case FFA_MEM_SHARE_32:
case FFA_MEM_RETRIEVE_RESP_32:
case FFA_MEM_RELINQUISH_32:
case FFA_MEM_RECLAIM_32:
case FFA_MEM_FRAG_RX_32:
case FFA_MEM_FRAG_TX_32:
case FFA_MSG_SEND_DIRECT_RESP_64:
case FFA_MSG_SEND_DIRECT_RESP_32:
case FFA_MSG_SEND_DIRECT_REQ_64:
case FFA_MSG_SEND_DIRECT_REQ_32:
#if (MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED)
/* FF-A v1.1 features. */
case FFA_SPM_ID_GET_32:
case FFA_NOTIFICATION_BITMAP_CREATE_32:
case FFA_NOTIFICATION_BITMAP_DESTROY_32:
case FFA_NOTIFICATION_BIND_32:
case FFA_NOTIFICATION_UNBIND_32:
case FFA_NOTIFICATION_SET_32:
case FFA_NOTIFICATION_GET_32:
case FFA_NOTIFICATION_INFO_GET_64:
case FFA_MEM_PERM_GET_32:
case FFA_MEM_PERM_SET_32:
case FFA_MEM_PERM_GET_64:
case FFA_MEM_PERM_SET_64:
case FFA_MSG_SEND2_32:
#endif
#if (MAKE_FFA_VERSION(1, 2) <= FFA_VERSION_COMPILED)
/* FF-A v1.2 features. */
case FFA_CONSOLE_LOG_32:
case FFA_CONSOLE_LOG_64:
case FFA_PARTITION_INFO_GET_REGS_64:
case FFA_MSG_SEND_DIRECT_REQ2_64:
case FFA_MSG_SEND_DIRECT_RESP2_64:
#endif
return (struct ffa_value){.func = FFA_SUCCESS_32};
case FFA_RXTX_MAP_64: {
uint32_t arg2 = 0;
struct ffa_features_rxtx_map_params params = {
.min_buf_size = FFA_RXTX_MAP_MIN_BUF_4K,
.mbz = 0,
.max_buf_size =
(ffa_version >= MAKE_FFA_VERSION(1, 2))
? FFA_RXTX_MAP_MAX_BUF_PAGE_COUNT
: 0,
};
memcpy_s(&arg2, sizeof(arg2), &params, sizeof(params));
return (struct ffa_value){
.func = FFA_SUCCESS_32,
.arg2 = arg2,
};
}
case FFA_MEM_RETRIEVE_REQ_32:
if ((input_property & FFA_FEATURES_MEM_RETRIEVE_REQ_MBZ_MASK) !=
0U) {
dlog_verbose(
"Bits[31:2] and Bit[0] of input_property must "
"be zero.\ninput_property = %u.\n",
input_property);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (ffa_version >= MAKE_FFA_VERSION(1, 1)) {
if ((input_property &
FFA_FEATURES_MEM_RETRIEVE_REQ_NS_SUPPORT) == 0U) {
dlog_verbose("NS bit support must be 1.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
return api_ffa_feature_success(
FFA_FEATURES_MEM_RETRIEVE_REQ_BUFFER_SUPPORT |
(input_property &
FFA_FEATURES_MEM_RETRIEVE_REQ_NS_SUPPORT) |
FFA_FEATURES_MEM_RETRIEVE_REQ_HYPERVISOR_SUPPORT);
#if (MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED)
/* Check support of a feature provided respective feature ID. */
case FFA_FEATURE_NPI:
if (el0_partition) {
return ffa_error(FFA_NOT_SUPPORTED);
}
return api_ffa_feature_success(HF_NOTIFICATION_PENDING_INTID);
case FFA_FEATURE_SRI:
if (!ffa_is_vm_id(current->vm->id)) {
return ffa_error(FFA_NOT_SUPPORTED);
}
return api_ffa_feature_success(HF_SCHEDULE_RECEIVER_INTID);
#endif
/* Platform specific feature support. */
default:
return arch_ffa_features(feature_function_id);
}
}
/**
* FF-A specification states that x2/w2 Must Be Zero for FFA_MSG_SEND_DIRECT_REQ
* and FFA_MSG_SEND_DIRECT_RESP interfaces when used for partition messages. See
* FF-A v1.2 Table 16.6: FFA_MSG_SEND_DIRECT_REQ function syntax.
*/
static inline bool api_ffa_dir_msg_is_arg2_zero(struct ffa_value args)
{
return args.arg2 == 0U;
}
/**
* Limits size of arguments in ffa_value structure to 32-bit.
*/
static struct ffa_value api_ffa_value_copy32(struct ffa_value args)
{
return (struct ffa_value){
.func = (uint32_t)args.func,
.arg1 = (uint32_t)args.arg1,
.arg2 = (uint32_t)0,
.arg3 = (uint32_t)args.arg3,
.arg4 = (uint32_t)args.arg4,
.arg5 = (uint32_t)args.arg5,
.arg6 = (uint32_t)args.arg6,
.arg7 = (uint32_t)args.arg7,
};
}
/**
* Helper to copy direct message payload, depending on SMC used, direct
* messaging interface used, and expected registers size.
*/
static struct ffa_value api_ffa_dir_msg_value(struct ffa_value args)
{
if (args.func == FFA_MSG_SEND_DIRECT_REQ_32 ||
args.func == FFA_MSG_SEND_DIRECT_RESP_32) {
return api_ffa_value_copy32(args);
}
if (args.func == FFA_MSG_SEND_DIRECT_REQ_64 ||
args.func == FFA_MSG_SEND_DIRECT_RESP_64) {
args.arg2 = 0;
}
if (args.func == FFA_MSG_SEND_DIRECT_REQ2_64) {
args.extended_val.valid = true;
}
if (args.func == FFA_MSG_SEND_DIRECT_RESP2_64) {
args.arg2 = 0;
args.arg3 = 0;
}
return args;
}
static bool api_ffa_dir_msg_req2_is_uuid_valid(struct vm *receiver_vm,
struct ffa_value args)
{
struct ffa_uuid target_uuid;
uint16_t i;
ffa_uuid_unpack_from_uint64(args.arg2, args.arg3, &target_uuid);
/* Allow for use of Nil UUID. */
if (ffa_uuid_is_null(&target_uuid)) {
return true;
}
for (i = 0; i < PARTITION_MAX_UUIDS; i++) {
if (ffa_uuid_is_null(&receiver_vm->uuids[i])) {
break;
}
if (ffa_uuid_equal(&target_uuid, &receiver_vm->uuids[i])) {
return true;
}
}
return false;
}
/**
* Send an FF-A direct message request.
* This handler covers both FFA_MSG_SEND_DIRECT_REQ_32/64
* and FFA_MSG_SEND_DIRECT_REQ2_64 (introduced in FF-A v1.2) with function-based
* checks to accomodate for the difference between the ABIs.
*
* FFA_MSG_SEND_DIRECT_REQ2_64 works mostly the same as
* FFA_MSG_SEND_DIRECT_REQ_32/64, but adds the ability to send a direct message
* request to a specified UUID within a partition and the usage of an extended
* range of registers (x4-x17, instead of x4-x7) to be used as part of the
* message payload.
*/
struct ffa_value api_ffa_msg_send_direct_req(ffa_id_t sender_vm_id,
ffa_id_t receiver_vm_id,
struct ffa_value args,
struct vcpu *current,
struct vcpu **next)
{
struct ffa_value ret;
struct vm *receiver_vm;
struct vm_locked receiver_locked;
struct vcpu *receiver_vcpu;
struct vcpu_locked current_locked;
struct vcpu_locked receiver_vcpu_locked;
struct two_vcpu_locked vcpus_locked;
enum vcpu_state next_state = VCPU_STATE_RUNNING;
if ((args.func == FFA_MSG_SEND_DIRECT_REQ_32 ||
args.func == FFA_MSG_SEND_DIRECT_REQ_64) &&
!api_ffa_dir_msg_is_arg2_zero(args)) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (!plat_ffa_is_direct_request_valid(current, sender_vm_id,
receiver_vm_id)) {
dlog_verbose("Invalid direct message request.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (plat_ffa_direct_request_forward(receiver_vm_id, args, &ret)) {
return ret;
}
ret = (struct ffa_value){.func = FFA_INTERRUPT_32};
receiver_vm = vm_find(receiver_vm_id);
if (receiver_vm == NULL) {
dlog_verbose("Invalid Receiver!\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (args.func == FFA_MSG_SEND_DIRECT_REQ2_64 &&
!api_ffa_dir_msg_req2_is_uuid_valid(receiver_vm, args)) {
dlog_verbose("UUID unrecognized for this VM\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Check if sender supports sending direct message req, and if
* receiver supports receipt of direct message requests.
*/
if (!plat_ffa_is_direct_request_supported(current->vm, receiver_vm,
args.func)) {
return ffa_error(FFA_DENIED);
}
/*
* Per FF-A EAC spec section 4.4.1 the firmware framework supports
* UP (migratable) or MP partitions with a number of vCPUs matching the
* number of PEs in the system. It further states that MP partitions
* accepting direct request messages cannot migrate.
*/
receiver_vcpu = api_ffa_get_vm_vcpu(receiver_vm, current);
if (receiver_vcpu == NULL) {
dlog_verbose("Invalid vCPU!\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* If VM must be locked, it must be done before any of its vCPUs are
* locked.
*/
receiver_locked = vm_lock(receiver_vm);
/* Lock both vCPUs at once to avoid deadlock. */
vcpus_locked = vcpu_lock_both(current, receiver_vcpu);
current_locked = vcpus_locked.vcpu1;
receiver_vcpu_locked = vcpus_locked.vcpu2;
/*
* If destination vCPU is executing or already received an
* FFA_MSG_SEND_DIRECT_REQ then return to caller hinting recipient is
* busy. There is a brief period of time where the vCPU state has
* changed but regs_available is still false thus consider this case as
* the vCPU not yet ready to receive a direct message request.
*/
if (is_ffa_direct_msg_request_ongoing(receiver_vcpu_locked) ||
receiver_vcpu->state == VCPU_STATE_RUNNING ||
!receiver_vcpu->regs_available) {
dlog_verbose("Receiver is busy with another request.\n");
ret = ffa_error(FFA_BUSY);
goto out;
}
if (!plat_ffa_check_runtime_state_transition(
current_locked, sender_vm_id, HF_INVALID_VM_ID,
receiver_vcpu_locked, args.func, &next_state)) {
ret = ffa_error(FFA_DENIED);
goto out;
}
if (atomic_load_explicit(&receiver_vcpu->vm->aborting,
memory_order_relaxed)) {
if (receiver_vcpu->state != VCPU_STATE_ABORTED) {
dlog_verbose(
"Receiver VM %#x aborted, cannot run vCPU %u\n",
receiver_vcpu->vm->id,
vcpu_index(receiver_vcpu));
receiver_vcpu->state = VCPU_STATE_ABORTED;
}
ret = ffa_error(FFA_ABORTED);
goto out;
}
switch (receiver_vcpu->state) {
case VCPU_STATE_OFF:
case VCPU_STATE_RUNNING:
case VCPU_STATE_ABORTED:
case VCPU_STATE_BLOCKED_INTERRUPT:
case VCPU_STATE_BLOCKED:
case VCPU_STATE_PREEMPTED:
dlog_verbose("Receiver's vCPU can't receive request (%u)!\n",
vcpu_index(receiver_vcpu));
ret = ffa_error(FFA_BUSY);
goto out;
case VCPU_STATE_WAITING:
/*
* We expect target vCPU to be in WAITING state after either
* having called ffa_msg_wait or sent a direct message response.
*/
break;
}
/* Inject timer interrupt if any pending */
if (arch_timer_pending(&receiver_vcpu->regs)) {
api_interrupt_inject_locked(receiver_vcpu_locked,
HF_VIRTUAL_TIMER_INTID,
current_locked, NULL);
arch_timer_mask(&receiver_vcpu->regs);
}
/* The receiver vCPU runs upon direct message invocation */
receiver_vcpu->cpu = current->cpu;
receiver_vcpu->state = VCPU_STATE_RUNNING;
receiver_vcpu->regs_available = false;
receiver_vcpu->direct_request_origin.is_ffa_req2 =
(args.func == FFA_MSG_SEND_DIRECT_REQ2_64);
receiver_vcpu->direct_request_origin.vm_id = sender_vm_id;
arch_regs_set_retval(&receiver_vcpu->regs, api_ffa_dir_msg_value(args));
assert(!vm_id_is_current_world(current->vm->id) ||
next_state == VCPU_STATE_BLOCKED);
current->state = VCPU_STATE_BLOCKED;
plat_ffa_wind_call_chain_ffa_direct_req(
current_locked, receiver_vcpu_locked, sender_vm_id);
/* Switch to receiver vCPU targeted to by direct msg request */
*next = receiver_vcpu;
if (!receiver_locked.vm->el0_partition) {
/*
* If the scheduler in the system is giving CPU cycles to the
* receiver, due to pending notifications, inject the NPI
* interrupt. Following call assumes that '*next' has been set
* to receiver_vcpu.
*/
plat_ffa_inject_notification_pending_interrupt(
receiver_vcpu_locked, current_locked, receiver_locked);
}
/*
* Since this flow will lead to a VM switch, the return value will not
* be applied to current vCPU.
*/
out:
vcpu_unlock(&receiver_vcpu_locked);
vm_unlock(&receiver_locked);
vcpu_unlock(&current_locked);
return ret;
}
/**
* Resume the target vCPU after the current vCPU sent a direct response.
* Current vCPU moves to waiting state.
*/
void api_ffa_resume_direct_resp_target(struct vcpu_locked current_locked,
struct vcpu **next,
ffa_id_t receiver_vm_id,
struct ffa_value to_ret,
bool is_nwd_call_chain)
{
if (plat_ffa_is_spmd_lp_id(receiver_vm_id) ||
!vm_id_is_current_world(receiver_vm_id)) {
*next = api_switch_to_other_world(current_locked, to_ret,
VCPU_STATE_WAITING);
/* End of NWd scheduled call chain. */
assert(!is_nwd_call_chain ||
(current_locked.vcpu->call_chain.prev_node == NULL));
} else if (receiver_vm_id == HF_PRIMARY_VM_ID) {
*next = api_switch_to_primary(current_locked, to_ret,
VCPU_STATE_WAITING);
} else if (vm_id_is_current_world(receiver_vm_id)) {
/*
* It is expected the receiver_vm_id to be from an SP, otherwise
* 'plat_ffa_is_direct_response_valid' should have
* made function return error before getting to this point.
*/
*next = api_switch_to_vm(current_locked, to_ret,
VCPU_STATE_WAITING, receiver_vm_id);
} else {
panic("Invalid direct message response invocation");
}
}
/**
* Send an FF-A direct message response.
* This handler covers both FFA_MSG_SEND_DIRECT_RESP_32/64
* and FFA_MSG_SEND_DIRECT_RESP2_64 (introduced in FF-A v1.2) with
* function-based checks to accomodate for the difference between the ABIs.
*
* FFA_MSG_SEND_DIRECT_RESP2_64 is used to respond to requests sent via
* FFA_MSG_SEND_DIRECT_REQ2_64 and adds the usage of an extended range
* of registers (x4-x17, instead of x4-x7) to be used as part of the
* message payload.
*/
struct ffa_value api_ffa_msg_send_direct_resp(ffa_id_t sender_vm_id,
ffa_id_t receiver_vm_id,
struct ffa_value args,
struct vcpu *current,
struct vcpu **next)
{
struct vcpu_locked current_locked;
struct vcpu_locked next_locked = (struct vcpu_locked){
.vcpu = NULL,
};
enum vcpu_state next_state = VCPU_STATE_RUNNING;
struct ffa_value ret = (struct ffa_value){.func = FFA_INTERRUPT_32};
struct ffa_value signal_interrupt =
(struct ffa_value){.func = FFA_INTERRUPT_32};
struct ffa_value to_ret = api_ffa_dir_msg_value(args);
struct two_vcpu_locked vcpus_locked;
bool received_req2;
/*
* If using FFA_MSG_SEND_DIRECT_RESP, the caller's
* - x2 MBZ for partition messages
* - x8-x17 SBZ if caller's FF-A version >= FF-A v1.2
*/
if (args.func != FFA_MSG_SEND_DIRECT_RESP2_64) {
if (!api_ffa_dir_msg_is_arg2_zero(args)) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (current->vm->ffa_version >= MAKE_FFA_VERSION(1, 2) &&
!api_extended_args_are_zero(&args)) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
if (!plat_ffa_is_direct_response_valid(current, sender_vm_id,
receiver_vm_id)) {
dlog_verbose("Invalid direct response call.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
current_locked = vcpu_lock(current);
if (!plat_ffa_check_runtime_state_transition(
current_locked, sender_vm_id, receiver_vm_id, next_locked,
args.func, &next_state)) {
ret = ffa_error(FFA_DENIED);
goto out;
}
assert(!vm_id_is_current_world(current->vm->id) ||
next_state == VCPU_STATE_WAITING);
/*
* Ensure the terminating FFA_MSG_SEND_DIRECT_REQ had a
* defined originator.
*/
if (!is_ffa_direct_msg_request_ongoing(current_locked)) {
/*
* Sending direct response but direct request origin
* vCPU is not set.
*/
ret = ffa_error(FFA_DENIED);
goto out;
}
received_req2 = current->direct_request_origin.is_ffa_req2;
if (args.func != FFA_MSG_SEND_DIRECT_RESP2_64 && received_req2) {
dlog_verbose(
"%s: FFA_MSG_SEND_DIRECT_RESP must be used with "
"FFA_MSG_SEND_DIRECT_REQ.\n",
__func__);
ret = ffa_error(FFA_DENIED);
goto out;
} else if (args.func == FFA_MSG_SEND_DIRECT_RESP2_64 &&
!received_req2) {
dlog_verbose(
"%s: FFA_MSG_SEND_DIRECT_RESP2 must be used with "
"FFA_MSG_SEND_DIRECT_REQ2.\n",
__func__);
ret = ffa_error(FFA_DENIED);
goto out;
}
if (api_ffa_is_managed_exit_ongoing(current_locked)) {
/*
* Per FF-A v1.1 EAC0 section 8.3.1.2.1 rule 6, SPMC can signal
* a secure interrupt to a SP that is performing managed exit.
* We have taken a implementation defined choice to not allow
* Managed exit while a SP is processing a secure interrupt.
*/
CHECK(!current->processing_secure_interrupt);
plat_interrupts_set_priority_mask(current->priority_mask);
/*
* A SP may be signaled a managed exit but actually not trap
* the virtual interrupt, probably because it has virtual
* interrupts masked, and emit direct resp. In this case the
* managed exit operation is considered completed and it would
* also need to clear the pending managed exit flag for the SP
* vCPU.
*/
current->processing_managed_exit = false;
struct interrupts *interrupts = &current->interrupts;
if (vcpu_is_virt_interrupt_pending(interrupts,
HF_MANAGED_EXIT_INTID)) {
api_interrupt_clear_decrement(current_locked,
interrupts,
HF_MANAGED_EXIT_INTID);
}
}
if (plat_ffa_intercept_direct_response(current_locked, next, to_ret,
&signal_interrupt)) {
ret = signal_interrupt;
goto out;
}
/* Clear direct request origin vm_id and request type for the caller. */
current->direct_request_origin.is_ffa_req2 = false;
current->direct_request_origin.vm_id = HF_INVALID_VM_ID;
api_ffa_resume_direct_resp_target(current_locked, next, receiver_vm_id,
to_ret, false);
/*
* Unlock current vCPU to allow it to be locked together with next
* vcpu.
*/
vcpu_unlock(&current_locked);
/* Lock both vCPUs at once to avoid deadlock. */
vcpus_locked = vcpu_lock_both(current, *next);
current_locked = vcpus_locked.vcpu1;
next_locked = vcpus_locked.vcpu2;
plat_ffa_unwind_call_chain_ffa_direct_resp(current_locked, next_locked);
vcpu_unlock(&next_locked);
out:
vcpu_unlock(&current_locked);
return ret;
}
static bool api_memory_region_check_flags(
struct ffa_memory_region *memory_region, uint32_t share_func)
{
switch (share_func) {
case FFA_MEM_SHARE_32:
if ((memory_region->flags & FFA_MEMORY_REGION_FLAG_CLEAR) !=
0U) {
return false;
}
/* Intentional fall-through */
case FFA_MEM_LEND_32:
case FFA_MEM_DONATE_32: {
/* Bits 31:2 Must Be Zero. */
ffa_memory_receiver_flags_t to_mask =
~(FFA_MEMORY_REGION_FLAG_CLEAR |
FFA_MEMORY_REGION_FLAG_TIME_SLICE);
if ((memory_region->flags & to_mask) != 0U) {
return false;
}
break;
}
default:
panic("Check for mem send calls only.\n");
}
/* Last check reserved values are 0 */
return true;
}
/*
* Convert memory transaction descriptor from FF-A v1.0 to FF-A v1.1 EAC0.
*/
static void api_ffa_memory_region_v1_1_from_v1_0(
struct ffa_memory_region_v1_0 *memory_region_v1_0,
struct ffa_memory_region *memory_region_v1_1)
{
memory_region_v1_1->sender = memory_region_v1_0->sender;
memory_region_v1_1->handle = memory_region_v1_0->handle;
memory_region_v1_1->attributes =
ffa_memory_attributes_extend(memory_region_v1_0->attributes);
memory_region_v1_1->flags = memory_region_v1_0->flags;
memory_region_v1_1->tag = memory_region_v1_0->tag;
memory_region_v1_1->memory_access_desc_size =
sizeof(struct ffa_memory_access_v1_0);
memory_region_v1_1->receiver_count = memory_region_v1_0->receiver_count;
memory_region_v1_1->receivers_offset = sizeof(struct ffa_memory_region);
/* Zero reserved fields. */
for (uint32_t i = 0; i < 3U; i++) {
memory_region_v1_1->reserved[i] = 0U;
}
}
/**
* Updates a v1.0 transaction descriptor to v1.1. This gives us the
* memory_access_desc_size field we need for forwards compatability.
* Copy the receivers and composite descriptors to the new struct.
* We also check the fields in the v1.0 transaction descriptor and return:
* - FFA_ERROR FFA_INVALID_PARAMETERS: If any of the fields are not valid
* values, eg the reserved fields are not 0, receiver_count is too large or
* composite offsets are not 0 for retrieve requests or in bounds for send
* requests.
* - FFA ERROR FFA_NOT_SUPPORTED: If an invalid ffa_version is supplied to the
* function. Or the fragment length is more than a single page.
* - FFA_ERROR FFA_NO_MEMORY: If we do not have enough memory for a scratch
* memory transaction descriptor.
* - FFA_SUCCESS: If a successful update has occured.
*/
static struct ffa_value api_ffa_memory_transaction_descriptor_v1_1_from_v1_0(
void *allocated, uint32_t *fragment_length, uint32_t *total_length,
uint32_t ffa_version, bool send_transaction)
{
struct ffa_memory_region_v1_0 *memory_region_v1_0;
struct ffa_memory_region *memory_region_v1_1 = NULL;
struct ffa_composite_memory_region *composite_v1_0;
struct ffa_composite_memory_region *composite_v1_1;
size_t receivers_length;
size_t space_left;
size_t receivers_end;
size_t composite_offset_v1_1;
size_t composite_offset_v1_0;
size_t fragment_constituents_size;
size_t fragment_length_v1_1;
assert(fragment_length != NULL);
assert(total_length != NULL);
if (ffa_version >= MAKE_FFA_VERSION(1, 1)) {
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
if (ffa_version != MAKE_FFA_VERSION(1, 0)) {
dlog_verbose("%s: Unsupported FF-A version %x\n", __func__,
ffa_version);
return ffa_error(FFA_NOT_SUPPORTED);
}
dlog_verbose(
"Updating memory transaction descriptor "
" from v1.0 to v1.1.\n");
memory_region_v1_0 = (struct ffa_memory_region_v1_0 *)allocated;
receivers_length = sizeof(struct ffa_memory_access_v1_0) *
memory_region_v1_0->receiver_count;
receivers_end = sizeof(struct ffa_memory_region) + receivers_length;
/*
* Check the specified composite offset of v1.0 descriptor, and that all
* receivers were configured with the same offset.
*/
composite_offset_v1_0 =
memory_region_v1_0->receivers[0].composite_memory_region_offset;
/* Determine the composite offset for v1.1 descriptor. */
if (send_transaction) {
fragment_constituents_size =
*fragment_length - composite_offset_v1_0 -
sizeof(struct ffa_composite_memory_region);
fragment_length_v1_1 =
receivers_end +
sizeof(struct ffa_composite_memory_region) +
fragment_constituents_size;
composite_offset_v1_1 = receivers_end;
} else {
fragment_constituents_size = 0;
fragment_length_v1_1 = receivers_end;
composite_offset_v1_1 = 0;
}
/*
* Currently only support the simpler cases: memory transaction
* in a single fragment that fits in a MM_PPOOL_ENTRY_SIZE.
* TODO: allocate the entries needed for this fragment_length_v1_1.
* - Check corner when v1.1 descriptor converted size surpasses
* the size of the entry.
*/
if (fragment_length_v1_1 > MM_PPOOL_ENTRY_SIZE) {
dlog_verbose(
"Translation of FF-A v1.0 descriptors for over %u is "
"unsupported.",
MM_PPOOL_ENTRY_SIZE);
return ffa_error(FFA_NOT_SUPPORTED);
}
space_left = fragment_length_v1_1;
/*
* Allocate a page of memory to construct the v1.1 memory descriptor.
* Earlier we checked that the fragment_length_v1_1 would not be larger
* than a page.
*/
memory_region_v1_1 =
(struct ffa_memory_region *)mpool_alloc(&api_page_pool);
if (memory_region_v1_1 == NULL) {
return ffa_error(FFA_NO_MEMORY);
}
/* Translate header from v1.0 to v1.1. */
api_ffa_memory_region_v1_1_from_v1_0(memory_region_v1_0,
memory_region_v1_1);
space_left -= sizeof(struct ffa_memory_region);
/* Copy memory access information. */
memcpy_s((uint8_t *)memory_region_v1_1 +
memory_region_v1_1->receivers_offset,
space_left, memory_region_v1_0->receivers, receivers_length);
/* Initialize the memory access descriptors with composite offset. */
for (uint32_t i = 0; i < memory_region_v1_1->receiver_count; i++) {
struct ffa_memory_access *receiver =
ffa_memory_region_get_receiver(memory_region_v1_1, i);
assert(receiver != NULL);
receiver->composite_memory_region_offset =
composite_offset_v1_1;
}
space_left -= receivers_length;
/* Composite memory descriptors to copy. */
if (send_transaction) {
/* Init v1.1 composite. */
composite_v1_1 = (struct ffa_composite_memory_region
*)((uint8_t *)memory_region_v1_1 +
composite_offset_v1_1);
composite_v1_0 = ffa_memory_region_get_composite_v1_0(
memory_region_v1_0, 0);
composite_v1_1->constituent_count =
composite_v1_0->constituent_count;
composite_v1_1->page_count = composite_v1_0->page_count;
space_left -= sizeof(struct ffa_composite_memory_region);
/* Initialize v1.1 constituents. */
memcpy_s(composite_v1_1->constituents, space_left,
composite_v1_0->constituents,
fragment_constituents_size);
space_left -= fragment_constituents_size;
}
assert(space_left == 0U);
/*
* Remove the v1.0 fragment size, and resultant size of v1.1 fragment.
*/
*total_length = *total_length - *fragment_length + fragment_length_v1_1;
*fragment_length = fragment_length_v1_1;
/*
* After successfully updating to v1.1 copy the descriptor to the
* internal buffer given as a parameter (used to prevent TOCTOU attacks)
* and free the scratch memory used to construct it.
*/
memcpy_s(allocated, MM_PPOOL_ENTRY_SIZE, memory_region_v1_1,
*fragment_length);
mpool_free(&api_page_pool, memory_region_v1_1);
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
struct ffa_value api_ffa_mem_send(uint32_t share_func, uint32_t length,
uint32_t fragment_length, ipaddr_t address,
uint32_t page_count, struct vcpu *current)
{
struct vm *from = current->vm;
struct vm *to;
const void *from_msg;
void *allocated_entry;
struct ffa_memory_region *memory_region = NULL;
struct ffa_value ret;
bool targets_other_world = false;
uint32_t ffa_version;
if (ipa_addr(address) != 0 || page_count != 0) {
/*
* Hafnium only supports passing the descriptor in the TX
* mailbox.
*/
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (fragment_length > length) {
dlog_verbose(
"Fragment length %d greater than total length %d.\n",
fragment_length, length);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (fragment_length > HF_MAILBOX_SIZE ||
fragment_length > MM_PPOOL_ENTRY_SIZE) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Check that the sender has configured its send buffer. If the TX
* mailbox at from_msg is configured (i.e. from_msg != NULL) then it can
* be safely accessed after releasing the lock since the TX mailbox
* address can only be configured once.
*/
sl_lock(&from->lock);
from_msg = from->mailbox.send;
ffa_version = from->ffa_version;
sl_unlock(&from->lock);
if (from_msg == NULL) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Copy the memory region descriptor to a fresh page from the memory
* pool. This prevents the sender from changing it underneath us, and
* also lets us keep it around in the share state table if needed.
*/
allocated_entry = mpool_alloc(&api_page_pool);
if (allocated_entry == NULL) {
dlog_verbose("Failed to allocate memory region copy.\n");
return ffa_error(FFA_NO_MEMORY);
}
memcpy_s(allocated_entry, MM_PPOOL_ENTRY_SIZE, from_msg,
fragment_length);
if (!ffa_memory_region_sanity_check(allocated_entry, ffa_version,
fragment_length, true)) {
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
ret = api_ffa_memory_transaction_descriptor_v1_1_from_v1_0(
allocated_entry, &fragment_length, &length, ffa_version, true);
if (ret.func != FFA_SUCCESS_32) {
goto out;
}
memory_region = allocated_entry;
if (fragment_length < sizeof(struct ffa_memory_region) +
memory_region->memory_access_desc_size) {
dlog_verbose(
"Initial fragment length %d smaller than header size "
"%d.\n",
fragment_length,
sizeof(struct ffa_memory_region) +
memory_region->memory_access_desc_size);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!api_memory_region_check_flags(memory_region, share_func)) {
dlog_verbose(
"Memory region reserved arguments must be zero.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (memory_region->receiver_count == 0U) {
dlog_verbose("Receiver count can't be 0.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (share_func == FFA_MEM_DONATE_32 &&
memory_region->receiver_count != 1U) {
dlog_verbose(
"FFA_MEM_DONATE only supports one recipient. "
"Specified %u\n",
memory_region->receiver_count);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* Ensure that the receiver VM exists and isn't the same as the sender.
* If there is a receiver from the other world, track it for later
* forwarding if needed.
*/
for (uint32_t i = 0U; i < memory_region->receiver_count; i++) {
struct ffa_memory_access *receiver =
ffa_memory_region_get_receiver(memory_region, i);
assert(receiver != NULL);
ffa_id_t receiver_id = receiver->receiver_permissions.receiver;
to = vm_find(receiver_id);
if ((vm_id_is_current_world(receiver_id) && to == NULL) ||
to == from) {
dlog_verbose("%s: invalid receiver.\n", __func__);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!plat_ffa_is_memory_send_valid(receiver_id, share_func)) {
ret = ffa_error(FFA_DENIED);
goto out;
}
/* Capture if any of the receivers is from the other world. */
if (!targets_other_world) {
targets_other_world =
!vm_id_is_current_world(receiver_id);
}
}
if (targets_other_world) {
ret = plat_ffa_other_world_mem_send(
from, share_func, &memory_region, length,
fragment_length, &api_page_pool);
} else {
struct vm_locked from_locked = vm_lock(from);
ret = ffa_memory_send(from_locked, memory_region, length,
fragment_length, share_func,
&api_page_pool);
/*
* ffa_memory_send takes ownership of the memory_region, so
* make sure we don't free it.
*/
memory_region = NULL;
vm_unlock(&from_locked);
}
out:
if (memory_region != NULL) {
mpool_free(&api_page_pool, memory_region);
}
return ret;
}
struct ffa_value api_ffa_mem_retrieve_req(uint32_t length,
uint32_t fragment_length,
ipaddr_t address, uint32_t page_count,
struct vcpu *current)
{
struct vm *to = current->vm;
struct vm_locked to_locked;
const void *to_msg;
void *retrieve_msg;
struct ffa_memory_region *retrieve_request = NULL;
uint32_t message_buffer_size;
struct ffa_value ret;
uint32_t ffa_version;
if (ipa_addr(address) != 0 || page_count != 0) {
/*
* Hafnium only supports passing the descriptor in the TX
* mailbox.
*/
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (fragment_length != length) {
dlog_verbose("Fragmentation not supported.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
retrieve_msg = cpu_get_buffer(current->cpu);
message_buffer_size = cpu_get_buffer_size(current->cpu);
if (length > HF_MAILBOX_SIZE || length > message_buffer_size) {
dlog_verbose("Retrieve request too long.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
to_locked = vm_lock(to);
to_msg = to->mailbox.send;
ffa_version = to->ffa_version;
if (to_msg == NULL) {
dlog_verbose("TX buffer not setup.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* Copy the retrieve request descriptor to an internal buffer, so that
* the caller can't change it underneath us.
*/
memcpy_s(retrieve_msg, message_buffer_size, to_msg, length);
if ((vm_is_mailbox_other_world_owned(to_locked) &&
!plat_ffa_acquire_receiver_rx(to_locked, &ret)) ||
vm_is_mailbox_busy(to_locked)) {
/*
* Can't retrieve memory information if the mailbox is
* not available.
*/
dlog_verbose("%s: RX buffer not ready.\n", __func__);
ret = ffa_error(FFA_BUSY);
goto out;
}
if (!is_ffa_hypervisor_retrieve_request(retrieve_msg, to_locked)) {
if (!ffa_memory_region_sanity_check(retrieve_msg, ffa_version,
fragment_length, false)) {
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* If required, transform the retrieve request to FF-A v1.1.
*/
ret = api_ffa_memory_transaction_descriptor_v1_1_from_v1_0(
retrieve_msg, &fragment_length, &length, ffa_version,
false);
if (ret.func != FFA_SUCCESS_32) {
goto out;
}
}
retrieve_request = retrieve_msg;
if (plat_ffa_memory_handle_allocated_by_current_world(
retrieve_request->handle)) {
ret = ffa_memory_retrieve(to_locked, retrieve_request, length,
&api_page_pool);
} else {
dlog_error("Invalid FF-A memory handle.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
}
out:
vm_unlock(&to_locked);
return ret;
}
struct ffa_value api_ffa_mem_relinquish(struct vcpu *current)
{
struct vm *from = current->vm;
struct vm_locked from_locked;
const void *from_msg;
struct ffa_mem_relinquish *relinquish_request;
uint32_t message_buffer_size;
struct ffa_value ret;
uint32_t length;
from_locked = vm_lock(from);
from_msg = from->mailbox.send;
if (from_msg == NULL) {
dlog_verbose("TX buffer not setup.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* Calculate length from relinquish descriptor before copying. We will
* check again later to make sure it hasn't changed.
*/
length = sizeof(struct ffa_mem_relinquish) +
((struct ffa_mem_relinquish *)from_msg)->endpoint_count *
sizeof(ffa_id_t);
/*
* Copy the relinquish descriptor to an internal buffer, so that the
* caller can't change it underneath us.
*/
relinquish_request =
(struct ffa_mem_relinquish *)cpu_get_buffer(current->cpu);
message_buffer_size = cpu_get_buffer_size(current->cpu);
if (length > HF_MAILBOX_SIZE || length > message_buffer_size) {
dlog_verbose("Relinquish message too long.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memcpy_s(relinquish_request, message_buffer_size, from_msg, length);
if (sizeof(struct ffa_mem_relinquish) +
relinquish_request->endpoint_count * sizeof(ffa_id_t) !=
length) {
dlog_verbose(
"Endpoint count changed while copying to internal "
"buffer.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
ret = ffa_memory_relinquish(from_locked, relinquish_request,
&api_page_pool);
out:
vm_unlock(&from_locked);
return ret;
}
struct ffa_value api_ffa_mem_reclaim(ffa_memory_handle_t handle,
ffa_memory_region_flags_t flags,
struct vcpu *current)
{
struct vm *to = current->vm;
struct ffa_value ret;
if (plat_ffa_memory_handle_allocated_by_current_world(handle)) {
struct vm_locked to_locked = vm_lock(to);
ret = ffa_memory_reclaim(to_locked, handle, flags,
&api_page_pool);
vm_unlock(&to_locked);
} else {
ret = plat_ffa_other_world_mem_reclaim(to, handle, flags,
&api_page_pool);
}
return ret;
}
struct ffa_value api_ffa_mem_frag_rx(ffa_memory_handle_t handle,
uint32_t fragment_offset,
ffa_id_t sender_vm_id,
struct vcpu *current)
{
struct vm *to = current->vm;
struct vm_locked to_locked;
struct ffa_value ret;
/* Sender ID MBZ at virtual instance. */
if (vm_id_is_current_world(to->id)) {
if (sender_vm_id != 0) {
dlog_verbose("%s: Invalid sender.\n", __func__);
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
to_locked = vm_lock(to);
if (vm_is_mailbox_busy(to_locked)) {
/*
* Can't retrieve memory information if the mailbox is not
* available.
*/
dlog_verbose("%s: RX buffer not ready partition %x.\n",
__func__, to_locked.vm->id);
ret = ffa_error(FFA_BUSY);
goto out;
}
ret = ffa_memory_retrieve_continue(to_locked, handle, fragment_offset,
sender_vm_id, &api_page_pool);
out:
vm_unlock(&to_locked);
return ret;
}
struct ffa_value api_ffa_mem_frag_tx(ffa_memory_handle_t handle,
uint32_t fragment_length,
ffa_id_t sender_vm_id,
struct vcpu *current)
{
struct vm *from = current->vm;
const void *from_msg;
void *fragment_copy;
struct ffa_value ret;
/* Sender ID MBZ at virtual instance. */
if (vm_id_is_current_world(from->id) && sender_vm_id != 0) {
dlog_verbose("Invalid sender.");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Check that the sender has configured its send buffer. If the TX
* mailbox at from_msg is configured (i.e. from_msg != NULL) then it can
* be safely accessed after releasing the lock since the TX mailbox
* address can only be configured once.
*/
sl_lock(&from->lock);
from_msg = from->mailbox.send;
sl_unlock(&from->lock);
if (from_msg == NULL) {
dlog_verbose("Mailbox from %x is not set.\n", from->id);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Copy the fragment to a fresh page from the memory pool. This prevents
* the sender from changing it underneath us, and also lets us keep it
* around in the share state table if needed.
*/
if (fragment_length > HF_MAILBOX_SIZE ||
fragment_length > MM_PPOOL_ENTRY_SIZE) {
dlog_verbose(
"Fragment length %d larger than mailbox size %d.\n",
fragment_length, HF_MAILBOX_SIZE);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (fragment_length < sizeof(struct ffa_memory_region_constituent) ||
fragment_length % sizeof(struct ffa_memory_region_constituent) !=
0) {
dlog_verbose("Invalid fragment length %d.\n", fragment_length);
return ffa_error(FFA_INVALID_PARAMETERS);
}
fragment_copy = mpool_alloc(&api_page_pool);
if (fragment_copy == NULL) {
dlog_verbose("Failed to allocate fragment copy.\n");
return ffa_error(FFA_NO_MEMORY);
}
memcpy_s(fragment_copy, MM_PPOOL_ENTRY_SIZE, from_msg, fragment_length);
/*
* Hafnium doesn't support fragmentation of memory retrieve requests
* (because it doesn't support caller-specified mappings, so a request
* will never be larger than a single page), so this must be part of a
* memory send (i.e. donate, lend or share) request.
*
* We can tell from the handle whether the memory transaction is for the
* other world or not.
*/
if (plat_ffa_memory_handle_allocated_by_current_world(handle)) {
struct vm_locked from_locked = vm_lock(from);
ret = ffa_memory_send_continue(from_locked, fragment_copy,
fragment_length, handle,
&api_page_pool);
/*
* `ffa_memory_send_continue` takes ownership of the
* fragment_copy, so we don't need to free it here.
*/
vm_unlock(&from_locked);
} else {
ret = plat_ffa_other_world_mem_send_continue(
from, fragment_copy, fragment_length, handle,
&api_page_pool);
}
return ret;
}
/**
* Register an entry point for a vCPU in warm boot cases.
* DEN0077A FF-A v1.1 Beta0 section 18.3.2.1 FFA_SECONDARY_EP_REGISTER.
*/
struct ffa_value api_ffa_secondary_ep_register(ipaddr_t entry_point,
struct vcpu *current)
{
struct vm_locked vm_locked;
struct vcpu_locked current_locked;
/*
* Reject if interface is not supported at this FF-A instance
* (DEN0077A FF-A v1.1 Beta0 Table 18.29) or the VM is UP.
*/
if (!plat_ffa_is_secondary_ep_register_supported() ||
current->vm->vcpu_count == 1) {
return ffa_error(FFA_NOT_SUPPORTED);
}
/*
* No further check is made on the address validity
* (FF-A v1.1 Beta0 Table 18.29) as the VM boundaries are not known
* from the VM or vCPU structure.
* DEN0077A FF-A v1.1 Beta0 section 18.3.2.1.1:
* For each SP [...] the Framework assumes that the same entry point
* address is used for initializing any execution context during a
* secondary cold boot.
* If this function is invoked multiple times, then the entry point
* address specified in the last valid invocation must be used by the
* callee.
*/
current_locked = vcpu_lock(current);
if (current->rt_model != RTM_SP_INIT) {
dlog_error(
"FFA_SECONDARY_EP_REGISTER can only be called while "
"vCPU in run-time state for initialization.\n");
vcpu_unlock(&current_locked);
return ffa_error(FFA_DENIED);
}
vcpu_unlock(&current_locked);
vm_locked = vm_lock(current->vm);
vm_locked.vm->secondary_ep = entry_point;
vm_unlock(&vm_locked);
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
struct ffa_value api_ffa_notification_bitmap_create(ffa_id_t vm_id,
ffa_vcpu_count_t vcpu_count,
struct vcpu *current)
{
const struct ffa_value ret =
plat_ffa_is_notifications_bitmap_access_valid(current, vm_id);
if (ffa_func_id(ret) != FFA_SUCCESS_32) {
dlog_verbose(
"FFA_NOTIFICATION_BITMAP_CREATE to be used by "
"hypervisor for valid NWd VM IDs only (%x).\n",
vm_id);
return ret;
}
return plat_ffa_notifications_bitmap_create(vm_id, vcpu_count);
}
struct ffa_value api_ffa_notification_bitmap_destroy(ffa_id_t vm_id,
struct vcpu *current)
{
const struct ffa_value ret =
plat_ffa_is_notifications_bitmap_access_valid(current, vm_id);
if (ffa_func_id(ret) != FFA_SUCCESS_32) {
dlog_verbose(
"FFA_NOTIFICATION_BITMAP_DESTROY to be used by "
"hypervisor for valid NWd VM IDs only (%x).\n",
vm_id);
return ret;
}
return plat_ffa_notifications_bitmap_destroy(vm_id);
}
struct ffa_value api_ffa_notification_update_bindings(
ffa_id_t sender_vm_id, ffa_id_t receiver_vm_id, uint32_t flags,
ffa_notifications_bitmap_t notifications, bool is_bind,
struct vcpu *current)
{
struct ffa_value ret = {.func = FFA_SUCCESS_32};
struct vm_locked receiver_locked;
const bool is_per_vcpu = (flags & FFA_NOTIFICATION_FLAG_PER_VCPU) != 0U;
const ffa_id_t id_to_update = is_bind ? sender_vm_id : HF_INVALID_VM_ID;
const ffa_id_t id_to_validate =
is_bind ? HF_INVALID_VM_ID : sender_vm_id;
const uint32_t flags_mbz =
is_bind ? ~FFA_NOTIFICATIONS_FLAG_PER_VCPU : ~0U;
if ((flags_mbz & flags) != 0U) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (!plat_ffa_is_notifications_bind_valid(current, sender_vm_id,
receiver_vm_id)) {
dlog_verbose("Invalid use of notifications bind interface.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (plat_ffa_notifications_update_bindings_forward(
receiver_vm_id, sender_vm_id, flags, notifications, is_bind,
&ret)) {
return ret;
}
if (notifications == 0U) {
dlog_verbose("No notifications have been specified %x.\n",
notifications);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/**
* This check assumes receiver is the current VM, and has been enforced
* by 'plat_ffa_is_notifications_bind_valid'.
*/
receiver_locked = plat_ffa_vm_find_locked(receiver_vm_id);
if (receiver_locked.vm == NULL) {
dlog_verbose("Receiver doesn't exist!\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (!vm_locked_are_notifications_enabled(receiver_locked)) {
dlog_verbose("Notifications are not enabled.\n");
ret = ffa_error(FFA_NOT_SUPPORTED);
goto out;
}
if (is_bind && vm_id_is_current_world(sender_vm_id) &&
vm_find(sender_vm_id) == NULL) {
dlog_verbose("Sender VM does not exist!\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* Can't bind/unbind notifications if at least one is bound to a
* different sender.
*/
if (!vm_notifications_validate_bound_sender(
receiver_locked, ffa_is_vm_id(sender_vm_id), id_to_validate,
notifications)) {
dlog_verbose(
"Sender %x not permitted to set notifications %x to "
"%x.\n",
sender_vm_id, notifications, receiver_vm_id);
ret = ffa_error(FFA_DENIED);
goto out;
}
/**
* Check if there is a pending notification within those specified in
* the bitmap.
*/
if (vm_are_notifications_pending(receiver_locked,
ffa_is_vm_id(sender_vm_id),
notifications)) {
dlog_verbose("Notifications within '%x' pending.\n",
notifications);
ret = ffa_error(FFA_DENIED);
goto out;
}
vm_notifications_update_bindings(
receiver_locked, ffa_is_vm_id(sender_vm_id), id_to_update,
notifications, is_per_vcpu && is_bind);
out:
vm_unlock(&receiver_locked);
return ret;
}
struct ffa_value api_ffa_notification_set(
ffa_id_t sender_vm_id, ffa_id_t receiver_vm_id, uint32_t flags,
ffa_notifications_bitmap_t notifications, struct vcpu *current)
{
struct ffa_value ret;
struct vm_locked receiver_locked;
/*
* Check if is per-vCPU or global, and extracting vCPU ID according
* to table 17.19 of the FF-A v1.1 Beta 0 spec.
*/
bool is_per_vcpu = (flags & FFA_NOTIFICATION_FLAG_PER_VCPU) != 0U;
ffa_vcpu_index_t vcpu_id = (uint16_t)(flags >> 16);
const uint32_t flags_mbz =
~(FFA_NOTIFICATIONS_FLAG_PER_VCPU |
FFA_NOTIFICATIONS_FLAG_DELAY_SRI | (0xFFFFU << 16));
if ((flags_mbz & flags) != 0U) {
dlog_verbose("%s: caller shouldn't set bits that MBZ.\n",
__func__);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* Global notifications must target any vCPU. */
if (!is_per_vcpu && vcpu_id != 0U) {
dlog_verbose(
"For global notifications vCPU ID MBZ in call to set "
"notifications.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (!plat_ffa_is_notification_set_valid(current, sender_vm_id,
receiver_vm_id)) {
dlog_verbose("Invalid use of notifications set interface.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (notifications == 0U) {
dlog_verbose("No notifications have been specified.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (plat_ffa_notification_set_forward(sender_vm_id, receiver_vm_id,
flags, notifications, &ret)) {
return ret;
}
/*
* This check assumes receiver is the current VM, and has been enforced
* by 'plat_ffa_is_notification_set_valid'.
*/
receiver_locked = plat_ffa_vm_find_locked(receiver_vm_id);
if (receiver_locked.vm == NULL) {
dlog_verbose("Receiver ID is not valid.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (!vm_locked_are_notifications_enabled(receiver_locked)) {
dlog_verbose("Receiver's notifications not enabled.\n");
ret = ffa_error(FFA_DENIED);
goto out;
}
/*
* Check the if the notifications are bound as global if per-vCPU flag
* is set, or if they are bound as per-vCPU and caller setting as
* global. In either case, return FFA_INVALID_PARAMETERS.
*/
if (vm_notifications_validate_binding(
receiver_locked, ffa_is_vm_id(sender_vm_id), sender_vm_id,
notifications, !is_per_vcpu)) {
dlog_verbose("Notifications in %x are %s\n", notifications,
!is_per_vcpu ? "global" : "per-vCPU");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* If notifications are not bound to the sender, they wouldn't be
* enabled either for the receiver.
*/
if (!vm_notifications_validate_binding(
receiver_locked, ffa_is_vm_id(sender_vm_id), sender_vm_id,
notifications, is_per_vcpu)) {
dlog_verbose("Notifications bindings not valid.\n");
ret = ffa_error(FFA_DENIED);
goto out;
}
if (is_per_vcpu && vcpu_id >= receiver_locked.vm->vcpu_count) {
dlog_verbose("Invalid VCPU ID!\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/* Set notifications pending. */
vm_notifications_partition_set_pending(
receiver_locked, ffa_is_vm_id(sender_vm_id), notifications,
vcpu_id, is_per_vcpu);
dlog_verbose("Set the notifications: %x.\n", notifications);
if ((FFA_NOTIFICATIONS_FLAG_DELAY_SRI & flags) == 0) {
dlog_verbose("SRI was NOT delayed. vcpu: %u!\n",
vcpu_index(current));
plat_ffa_sri_trigger_not_delayed(current->cpu);
} else {
plat_ffa_sri_state_set(DELAYED);
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
vm_unlock(&receiver_locked);
return ret;
}
static struct ffa_value api_ffa_notification_get_success_return(
ffa_notifications_bitmap_t from_sp, ffa_notifications_bitmap_t from_vm,
ffa_notifications_bitmap_t from_framework)
{
return (struct ffa_value){
.func = FFA_SUCCESS_32,
.arg1 = 0U,
.arg2 = (uint32_t)from_sp,
.arg3 = (uint32_t)(from_sp >> 32),
.arg4 = (uint32_t)from_vm,
.arg5 = (uint32_t)(from_vm >> 32),
.arg6 = (uint32_t)from_framework,
.arg7 = (uint32_t)(from_framework >> 32),
};
}
struct ffa_value api_ffa_notification_get(ffa_id_t receiver_vm_id,
ffa_vcpu_index_t vcpu_id,
uint32_t flags, struct vcpu *current)
{
ffa_notifications_bitmap_t framework_notifications = 0;
ffa_notifications_bitmap_t sp_notifications = 0;
ffa_notifications_bitmap_t vm_notifications = 0;
struct vm_locked receiver_locked;
struct ffa_value ret;
const uint32_t flags_mbz = ~(FFA_NOTIFICATION_FLAG_BITMAP_HYP |
FFA_NOTIFICATION_FLAG_BITMAP_SPM |
FFA_NOTIFICATION_FLAG_BITMAP_SP |
FFA_NOTIFICATION_FLAG_BITMAP_VM);
/* The FF-A v1.1 EAC0 specification states bits [31:4] Must Be Zero. */
if ((flags & flags_mbz) != 0U) {
dlog_verbose(
"Invalid flags bit(s) set in notifications get. [31:4] "
"MBZ(%x)\n",
flags);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Following check should capture wrong uses of the interface,
* depending on whether Hafnium is SPMC or hypervisor. On the
* rest of the function it is assumed this condition is met.
*/
if (!plat_ffa_is_notification_get_valid(current, receiver_vm_id,
flags)) {
dlog_verbose("Invalid use of notifications get interface.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* This check assumes receiver is the current VM, and has been enforced
* by `plat_ffa_is_notifications_get_valid`.
*/
receiver_locked = plat_ffa_vm_find_locked(receiver_vm_id);
/*
* `plat_ffa_is_notifications_get_valid` ensures following is never
* true.
*/
CHECK(receiver_locked.vm != NULL);
if (receiver_locked.vm->vcpu_count <= vcpu_id ||
(receiver_locked.vm->vcpu_count != 1 &&
cpu_index(current->cpu) != vcpu_id)) {
dlog_verbose(
"Invalid VCPU ID %u. vcpu count %u current core: %u!\n",
vcpu_id, receiver_locked.vm->vcpu_count,
cpu_index(current->cpu));
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if ((flags & FFA_NOTIFICATION_FLAG_BITMAP_SP) != 0U) {
if (!plat_ffa_notifications_get_from_sp(
receiver_locked, vcpu_id, &sp_notifications,
&ret)) {
dlog_verbose("Failed to get notifications from sps.");
goto out;
}
}
if ((flags & FFA_NOTIFICATION_FLAG_BITMAP_VM) != 0U) {
vm_notifications = vm_notifications_partition_get_pending(
receiver_locked, true, vcpu_id);
}
if ((flags & FFA_NOTIFICATION_FLAG_BITMAP_HYP) != 0U ||
(flags & FFA_NOTIFICATION_FLAG_BITMAP_SPM) != 0U) {
if (!plat_ffa_notifications_get_framework_notifications(
receiver_locked, &framework_notifications, flags,
vcpu_id, &ret)) {
dlog_verbose(
"Failed to get notifications from "
"framework.\n");
goto out;
}
}
ret = api_ffa_notification_get_success_return(
sp_notifications, vm_notifications, framework_notifications);
/*
* If there are no more pending notifications, change `sri_state` to
* handled.
*/
if (vm_is_notifications_pending_count_zero()) {
plat_ffa_sri_state_set(HANDLED);
}
if (!receiver_locked.vm->el0_partition &&
!vm_are_global_notifications_pending(receiver_locked)) {
vm_notifications_set_npi_injected(receiver_locked, false);
}
out:
vm_unlock(&receiver_locked);
return ret;
}
/**
* Prepares successful return for FFA_NOTIFICATION_INFO_GET, as described by
* the section 17.7.1 of the FF-A v1.1 Beta0 specification.
*/
static struct ffa_value api_ffa_notification_info_get_success_return(
const uint16_t *ids, uint32_t ids_count, const uint32_t *lists_sizes,
uint32_t lists_count)
{
struct ffa_value ret = (struct ffa_value){.func = FFA_SUCCESS_64};
/*
* Copying content of ids into ret structure. Use 5 registers (x3-x7) to
* hold the list of ids.
*/
memcpy_s(&ret.arg3,
sizeof(ret.arg3) * FFA_NOTIFICATIONS_INFO_GET_REGS_RET, ids,
sizeof(ids[0]) * ids_count);
/*
* According to the spec x2 should have:
* - Bit flagging if there are more notifications pending;
* - The total number of elements (i.e. total list size);
* - The number of VCPU IDs within each VM specific list.
*/
ret.arg2 = vm_notifications_pending_not_retrieved_by_scheduler()
? FFA_NOTIFICATIONS_INFO_GET_FLAG_MORE_PENDING
: 0;
ret.arg2 |= (lists_count & FFA_NOTIFICATIONS_LISTS_COUNT_MASK)
<< FFA_NOTIFICATIONS_LISTS_COUNT_SHIFT;
for (unsigned int i = 0; i < lists_count; i++) {
ret.arg2 |= (lists_sizes[i] & FFA_NOTIFICATIONS_LIST_SIZE_MASK)
<< FFA_NOTIFICATIONS_LIST_SHIFT(i + 1);
}
return ret;
}
struct ffa_value api_ffa_notification_info_get(struct vcpu *current)
{
/*
* Following set of variables should be populated with the return info.
* At a successfull handling of this interface, they should be used
* to populate the 'ret' structure in accordance to the table 17.29
* of the FF-A v1.1 Beta0 specification.
*/
uint16_t ids[FFA_NOTIFICATIONS_INFO_GET_MAX_IDS];
uint32_t lists_sizes[FFA_NOTIFICATIONS_INFO_GET_MAX_IDS] = {0};
uint32_t lists_count = 0;
uint32_t ids_count = 0;
bool list_is_full = false;
struct ffa_value result;
/*
* This interface can only be called at NS virtual/physical FF-A
* instance by the endpoint implementing the primary scheduler and the
* Hypervisor/OS kernel.
* In the SPM, following check passes if call has been forwarded from
* the hypervisor.
*/
if (current->vm->id != HF_PRIMARY_VM_ID) {
dlog_verbose(
"Only the receiver's scheduler can use this "
"interface\n");
return ffa_error(FFA_NOT_SUPPORTED);
}
/*
* Forward call to the other world, and fill the arrays used to assemble
* return.
*/
plat_ffa_notification_info_get_forward(
ids, &ids_count, lists_sizes, &lists_count,
FFA_NOTIFICATIONS_INFO_GET_MAX_IDS);
list_is_full = ids_count == FFA_NOTIFICATIONS_INFO_GET_MAX_IDS;
/* Get notifications' info from this world */
for (ffa_vm_count_t index = 0; index < vm_get_count() && !list_is_full;
++index) {
struct vm_locked vm_locked = vm_lock(vm_find_index(index));
list_is_full = vm_notifications_info_get(
vm_locked, ids, &ids_count, lists_sizes, &lists_count,
FFA_NOTIFICATIONS_INFO_GET_MAX_IDS);
vm_unlock(&vm_locked);
}
if (!list_is_full) {
/* Grab notifications info from other world */
plat_ffa_vm_notifications_info_get(
ids, &ids_count, lists_sizes, &lists_count,
FFA_NOTIFICATIONS_INFO_GET_MAX_IDS);
}
if (ids_count == 0) {
dlog_verbose(
"Notification info get has no data to retrieve.\n");
result = ffa_error(FFA_NO_DATA);
} else {
result = api_ffa_notification_info_get_success_return(
ids, ids_count, lists_sizes, lists_count);
}
plat_ffa_sri_state_set(HANDLED);
return result;
}
struct ffa_value api_ffa_mem_perm_get(vaddr_t base_addr, struct vcpu *current)
{
struct vm_locked vm_locked;
struct ffa_value ret = ffa_error(FFA_INVALID_PARAMETERS);
bool mode_ret = false;
uint32_t mode = 0;
if (!plat_ffa_is_mem_perm_get_valid(current)) {
return ffa_error(FFA_DENIED);
}
if (!(current->vm->el0_partition)) {
return ffa_error(FFA_DENIED);
}
vm_locked = vm_lock(current->vm);
/*
* mm_get_mode is used to check if the given base_addr page is already
* mapped. If the page is unmapped, return error. If the page is mapped
* appropriate attributes are returned to the caller. Note that
* mm_get_mode returns true if the address is in the valid VA range as
* supported by the architecture and MMU configurations, as opposed to
* whether a page is mapped or not. For a page to be known as mapped,
* the API must return true AND the returned mode must not have
* MM_MODE_INVALID set.
*/
mode_ret = mm_get_mode(&vm_locked.vm->ptable, base_addr,
va_add(base_addr, PAGE_SIZE), &mode);
if (!mode_ret || (mode & MM_MODE_INVALID)) {
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/* No memory should be marked RWX */
CHECK((mode & (MM_MODE_R | MM_MODE_W | MM_MODE_X)) !=
(MM_MODE_R | MM_MODE_W | MM_MODE_X));
/*
* S-EL0 partitions are expected to have all their pages marked as
* non-global.
*/
CHECK((mode & (MM_MODE_NG | MM_MODE_USER)) ==
(MM_MODE_NG | MM_MODE_USER));
if (mode & MM_MODE_W) {
/* No memory should be writeable but not readable. */
CHECK(mode & MM_MODE_R);
ret = (struct ffa_value){.func = FFA_SUCCESS_32,
.arg2 = (uint32_t)(FFA_MEM_PERM_RW)};
} else if (mode & MM_MODE_R) {
ret = (struct ffa_value){.func = FFA_SUCCESS_32,
.arg2 = (uint32_t)(FFA_MEM_PERM_RX)};
if (!(mode & MM_MODE_X)) {
ret.arg2 = (uint32_t)(FFA_MEM_PERM_RO);
}
}
out:
vm_unlock(&vm_locked);
return ret;
}
struct ffa_value api_ffa_mem_perm_set(vaddr_t base_addr, uint32_t page_count,
uint32_t mem_perm, struct vcpu *current)
{
struct vm_locked vm_locked;
struct ffa_value ret;
bool mode_ret = false;
uint32_t original_mode;
uint32_t new_mode;
struct mpool local_page_pool;
if (!plat_ffa_is_mem_perm_set_valid(current)) {
return ffa_error(FFA_DENIED);
}
if (!(current->vm->el0_partition)) {
return ffa_error(FFA_DENIED);
}
if (!is_aligned(va_addr(base_addr), PAGE_SIZE)) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
if ((mem_perm != FFA_MEM_PERM_RW) && (mem_perm != FFA_MEM_PERM_RO) &&
(mem_perm != FFA_MEM_PERM_RX)) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if any
* stage of the process fails.
*/
mpool_init_with_fallback(&local_page_pool, &api_page_pool);
vm_locked = vm_lock(current->vm);
/*
* All regions accessible by the partition are mapped during boot. If we
* cannot get a successful translation for the page range, the request
* to change permissions is rejected.
* mm_get_mode is used to check if the given address range is already
* mapped. If the range is unmapped, return error. If the range is
* mapped appropriate attributes are returned to the caller. Note that
* mm_get_mode returns true if the address is in the valid VA range as
* supported by the architecture and MMU configurations, as opposed to
* whether a page is mapped or not. For a page to be known as mapped,
* the API must return true AND the returned mode must not have
* MM_MODE_INVALID set.
*/
mode_ret = mm_get_mode(&vm_locked.vm->ptable, base_addr,
va_add(base_addr, page_count * PAGE_SIZE),
&original_mode);
if (!mode_ret || (original_mode & MM_MODE_INVALID)) {
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/* Device memory cannot be marked as executable */
if ((original_mode & MM_MODE_D) && (mem_perm == FFA_MEM_PERM_RX)) {
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
new_mode = MM_MODE_USER | MM_MODE_NG;
if (mem_perm == FFA_MEM_PERM_RW) {
new_mode |= MM_MODE_R | MM_MODE_W;
} else if (mem_perm == FFA_MEM_PERM_RX) {
new_mode |= MM_MODE_R | MM_MODE_X;
} else if (mem_perm == FFA_MEM_PERM_RO) {
new_mode |= MM_MODE_R;
}
/*
* Safe to re-map memory, since we know the requested permissions are
* valid, and the memory requested to be re-mapped is also valid.
*/
if (!mm_identity_prepare(
&vm_locked.vm->ptable, pa_from_va(base_addr),
pa_from_va(va_add(base_addr, page_count * PAGE_SIZE)),
new_mode, &local_page_pool)) {
/*
* Defrag the table into the local page pool.
* mm_identity_prepare could have allocated or freed pages to
* split blocks or tables etc.
*/
mm_stage1_defrag(&vm_locked.vm->ptable, &local_page_pool);
/*
* Guaranteed to succeed mapping with old mode since the mapping
* with old mode already existed and we have a local page pool
* that should have sufficient memory to go back to the original
* state.
*/
CHECK(mm_identity_prepare(
&vm_locked.vm->ptable, pa_from_va(base_addr),
pa_from_va(va_add(base_addr, page_count * PAGE_SIZE)),
original_mode, &local_page_pool));
mm_identity_commit(
&vm_locked.vm->ptable, pa_from_va(base_addr),
pa_from_va(va_add(base_addr, page_count * PAGE_SIZE)),
original_mode, &local_page_pool);
mm_stage1_defrag(&vm_locked.vm->ptable, &api_page_pool);
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
mm_identity_commit(
&vm_locked.vm->ptable, pa_from_va(base_addr),
pa_from_va(va_add(base_addr, page_count * PAGE_SIZE)), new_mode,
&local_page_pool);
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
vm_unlock(&vm_locked);
return ret;
}
/**
* Implements FF-A v1.2 FFA_CONSOLE_LOG ABI for buffered logging.
*/
struct ffa_value api_ffa_console_log(const struct ffa_value args,
struct vcpu *current)
{
/* Maximum number of characters is 128: 16 registers of 8 bytes each. */
char chars[128] = {0};
const bool v1_2 = current->vm->ffa_version >= MAKE_FFA_VERSION(1, 2);
const bool log32 = args.func == FFA_CONSOLE_LOG_32;
/*
* 32bit: always 6 registers
* 64bit and less than v1.2: 6 registers
* 64bit and v1.2 or greater: 16 registers
*/
const size_t registers_max = log32 ? 6 : (v1_2 ? 16 : 6);
const size_t chars_max =
registers_max * (log32 ? sizeof(uint32_t) : sizeof(uint64_t));
const size_t chars_count = args.arg1;
struct vm_locked vm_locked;
assert(args.func == FFA_CONSOLE_LOG_32 ||
args.func == FFA_CONSOLE_LOG_64);
if (chars_count == 0 || chars_count > chars_max) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (log32) {
uint32_t *registers = (uint32_t *)chars;
registers[0] = args.arg2 & 0xffffffff;
registers[1] = args.arg3 & 0xffffffff;
registers[2] = args.arg4 & 0xffffffff;
registers[3] = args.arg5 & 0xffffffff;
registers[4] = args.arg6 & 0xffffffff;
registers[5] = args.arg7 & 0xffffffff;
} else {
uint64_t *registers = (uint64_t *)chars;
registers[0] = args.arg2;
registers[1] = args.arg3;
registers[2] = args.arg4;
registers[3] = args.arg5;
registers[4] = args.arg6;
registers[5] = args.arg7;
if (v1_2) {
registers[6] = args.extended_val.arg8;
registers[7] = args.extended_val.arg9;
registers[8] = args.extended_val.arg10;
registers[9] = args.extended_val.arg11;
registers[10] = args.extended_val.arg12;
registers[11] = args.extended_val.arg13;
registers[12] = args.extended_val.arg14;
registers[13] = args.extended_val.arg15;
registers[14] = args.extended_val.arg16;
registers[15] = args.extended_val.arg17;
}
}
vm_locked = vm_lock(current->vm);
for (size_t i = 0; i < chars_count; i++) {
bool flush = false;
const char c = chars[i];
if (c == '\n' || c == '\0') {
flush = true;
} else {
vm_locked.vm->log_buffer
[vm_locked.vm->log_buffer_length++] = c;
flush = (vm_locked.vm->log_buffer_length ==
LOG_BUFFER_SIZE);
}
if (flush) {
dlog_flush_vm_buffer(vm_locked.vm->id,
vm_locked.vm->log_buffer,
vm_locked.vm->log_buffer_length);
vm_locked.vm->log_buffer_length = 0;
}
}
vm_unlock(&vm_locked);
return (struct ffa_value){.func = FFA_SUCCESS_32};
}