aboutsummaryrefslogtreecommitdiff
path: root/interface/include/psa/crypto_values.h
blob: 75e30505d45589ff8748b1cad626b5607efbccd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
/*
 * Copyright (c) 2018-2020, Arm Limited. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 *
 */
/**
 * \file psa/crypto_values.h
 *
 * \brief PSA cryptography module: macros to build and analyze integer values.
 *
 * \note This file may not be included directly. Applications must
 * include psa/crypto.h. Drivers must include the appropriate driver
 * header file.
 *
 * This file contains portable definitions of macros to build and analyze
 * values of integral types that encode properties of cryptographic keys,
 * designations of cryptographic algorithms, and error codes returned by
 * the library.
 *
 * This header file only defines preprocessor macros.
 */

#ifndef PSA_CRYPTO_VALUES_H
#define PSA_CRYPTO_VALUES_H

/** \defgroup error Error codes
 * @{
 */

/* PSA error codes */

/** The action was completed successfully. */
#ifndef PSA_SUCCESS
#define PSA_SUCCESS ((psa_status_t)0)
#endif

/** An error occurred that does not correspond to any defined
 * failure cause.
 *
 * Implementations may use this error code if none of the other standard
 * error codes are applicable. */
#define PSA_ERROR_GENERIC_ERROR         ((psa_status_t)-132)

/** The requested operation or a parameter is not supported
 * by this implementation.
 *
 * Implementations should return this error code when an enumeration
 * parameter such as a key type, algorithm, etc. is not recognized.
 * If a combination of parameters is recognized and identified as
 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
#define PSA_ERROR_NOT_SUPPORTED         ((psa_status_t)-134)

/** The requested action is denied by a policy.
 *
 * Implementations should return this error code when the parameters
 * are recognized as valid and supported, and a policy explicitly
 * denies the requested operation.
 *
 * If a subset of the parameters of a function call identify a
 * forbidden operation, and another subset of the parameters are
 * not valid or not supported, it is unspecified whether the function
 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
 * #PSA_ERROR_INVALID_ARGUMENT. */
#define PSA_ERROR_NOT_PERMITTED         ((psa_status_t)-133)

/** An output buffer is too small.
 *
 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
 * description to determine a sufficient buffer size.
 *
 * Implementations should preferably return this error code only
 * in cases when performing the operation with a larger output
 * buffer would succeed. However implementations may return this
 * error if a function has invalid or unsupported parameters in addition
 * to the parameters that determine the necessary output buffer size. */
#define PSA_ERROR_BUFFER_TOO_SMALL      ((psa_status_t)-138)

/** Asking for an item that already exists
 *
 * Implementations should return this error, when attempting
 * to write an item (like a key) that already exists. */
#define PSA_ERROR_ALREADY_EXISTS        ((psa_status_t)-139)

/** Asking for an item that doesn't exist
 *
 * Implementations should return this error, if a requested item (like
 * a key) does not exist. */
#define PSA_ERROR_DOES_NOT_EXIST        ((psa_status_t)-140)

/** The requested action cannot be performed in the current state.
 *
 * Multipart operations return this error when one of the
 * functions is called out of sequence. Refer to the function
 * descriptions for permitted sequencing of functions.
 *
 * Implementations shall not return this error code to indicate
 * that a key either exists or not,
 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
 * as applicable.
 *
 * Implementations shall not return this error code to indicate that a
 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
 * instead. */
#define PSA_ERROR_BAD_STATE             ((psa_status_t)-137)

/** The parameters passed to the function are invalid.
 *
 * Implementations may return this error any time a parameter or
 * combination of parameters are recognized as invalid.
 *
 * Implementations shall not return this error code to indicate that a
 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
 * instead.
 */
#define PSA_ERROR_INVALID_ARGUMENT      ((psa_status_t)-135)

/** There is not enough runtime memory.
 *
 * If the action is carried out across multiple security realms, this
 * error can refer to available memory in any of the security realms. */
#define PSA_ERROR_INSUFFICIENT_MEMORY   ((psa_status_t)-141)

/** There is not enough persistent storage.
 *
 * Functions that modify the key storage return this error code if
 * there is insufficient storage space on the host media. In addition,
 * many functions that do not otherwise access storage may return this
 * error code if the implementation requires a mandatory log entry for
 * the requested action and the log storage space is full. */
#define PSA_ERROR_INSUFFICIENT_STORAGE  ((psa_status_t)-142)

/** There was a communication failure inside the implementation.
 *
 * This can indicate a communication failure between the application
 * and an external cryptoprocessor or between the cryptoprocessor and
 * an external volatile or persistent memory. A communication failure
 * may be transient or permanent depending on the cause.
 *
 * \warning If a function returns this error, it is undetermined
 * whether the requested action has completed or not. Implementations
 * should return #PSA_SUCCESS on successful completion whenever
 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
 * if the requested action was completed successfully in an external
 * cryptoprocessor but there was a breakdown of communication before
 * the cryptoprocessor could report the status to the application.
 */
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)

/** There was a storage failure that may have led to data loss.
 *
 * This error indicates that some persistent storage is corrupted.
 * It should not be used for a corruption of volatile memory
 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
 * between the cryptoprocessor and its external storage (use
 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
 *
 * Note that a storage failure does not indicate that any data that was
 * previously read is invalid. However this previously read data may no
 * longer be readable from storage.
 *
 * When a storage failure occurs, it is no longer possible to ensure
 * the global integrity of the keystore. Depending on the global
 * integrity guarantees offered by the implementation, access to other
 * data may or may not fail even if the data is still readable but
 * its integrity cannot be guaranteed.
 *
 * Implementations should only use this error code to report a
 * permanent storage corruption. However application writers should
 * keep in mind that transient errors while reading the storage may be
 * reported using this error code. */
#define PSA_ERROR_STORAGE_FAILURE       ((psa_status_t)-146)

/** A hardware failure was detected.
 *
 * A hardware failure may be transient or permanent depending on the
 * cause. */
#define PSA_ERROR_HARDWARE_FAILURE      ((psa_status_t)-147)

/** A tampering attempt was detected.
 *
 * If an application receives this error code, there is no guarantee
 * that previously accessed or computed data was correct and remains
 * confidential. Applications should not perform any security function
 * and should enter a safe failure state.
 *
 * Implementations may return this error code if they detect an invalid
 * state that cannot happen during normal operation and that indicates
 * that the implementation's security guarantees no longer hold. Depending
 * on the implementation architecture and on its security and safety goals,
 * the implementation may forcibly terminate the application.
 *
 * This error code is intended as a last resort when a security breach
 * is detected and it is unsure whether the keystore data is still
 * protected. Implementations shall only return this error code
 * to report an alarm from a tampering detector, to indicate that
 * the confidentiality of stored data can no longer be guaranteed,
 * or to indicate that the integrity of previously returned data is now
 * considered compromised. Implementations shall not use this error code
 * to indicate a hardware failure that merely makes it impossible to
 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
 * instead).
 *
 * This error indicates an attack against the application. Implementations
 * shall not return this error code as a consequence of the behavior of
 * the application itself. */
#define PSA_ERROR_CORRUPTION_DETECTED    ((psa_status_t)-151)

/** There is not enough entropy to generate random data needed
 * for the requested action.
 *
 * This error indicates a failure of a hardware random generator.
 * Application writers should note that this error can be returned not
 * only by functions whose purpose is to generate random data, such
 * as key, IV or nonce generation, but also by functions that execute
 * an algorithm with a randomized result, as well as functions that
 * use randomization of intermediate computations as a countermeasure
 * to certain attacks.
 *
 * Implementations should avoid returning this error after psa_crypto_init()
 * has succeeded. Implementations should generate sufficient
 * entropy during initialization and subsequently use a cryptographically
 * secure pseudorandom generator (PRNG). However implementations may return
 * this error at any time if a policy requires the PRNG to be reseeded
 * during normal operation. */
#define PSA_ERROR_INSUFFICIENT_ENTROPY  ((psa_status_t)-148)

/** The signature, MAC or hash is incorrect.
 *
 * Verification functions return this error if the verification
 * calculations completed successfully, and the value to be verified
 * was determined to be incorrect.
 *
 * If the value to verify has an invalid size, implementations may return
 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
#define PSA_ERROR_INVALID_SIGNATURE     ((psa_status_t)-149)

/** The decrypted padding is incorrect.
 *
 * \warning In some protocols, when decrypting data, it is essential that
 * the behavior of the application does not depend on whether the padding
 * is correct, down to precise timing. Applications should prefer
 * protocols that use authenticated encryption rather than plain
 * encryption. If the application must perform a decryption of
 * unauthenticated data, the application writer should take care not
 * to reveal whether the padding is invalid.
 *
 * Implementations should strive to make valid and invalid padding
 * as close as possible to indistinguishable to an external observer.
 * In particular, the timing of a decryption operation should not
 * depend on the validity of the padding. */
#define PSA_ERROR_INVALID_PADDING       ((psa_status_t)-150)

/** Return this error when there's insufficient data when attempting
 * to read from a resource. */
#define PSA_ERROR_INSUFFICIENT_DATA     ((psa_status_t)-143)

/** The key handle is not valid. See also :ref:\`key-handles\`.
 */
#define PSA_ERROR_INVALID_HANDLE        ((psa_status_t)-136)

/**@}*/

/** \defgroup crypto_types Key and algorithm types
 * @{
 */

/** An invalid key type value.
 *
 * Zero is not the encoding of any key type.
 */
#define PSA_KEY_TYPE_NONE                           ((psa_key_type_t)0x0000)

/** Vendor-defined key type flag.
 *
 * Key types defined by this standard will never have the
 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
 * respect the bitwise structure used by standard encodings whenever practical.
 */
#define PSA_KEY_TYPE_VENDOR_FLAG                    ((psa_key_type_t)0x8000)

#define PSA_KEY_TYPE_CATEGORY_MASK                  ((psa_key_type_t)0x7000)
#define PSA_KEY_TYPE_CATEGORY_RAW                   ((psa_key_type_t)0x1000)
#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC             ((psa_key_type_t)0x2000)
#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY            ((psa_key_type_t)0x4000)
#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR              ((psa_key_type_t)0x7000)

#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR             ((psa_key_type_t)0x3000)

/** Whether a key type is vendor-defined.
 *
 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
 */
#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
    (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)

/** Whether a key type is an unstructured array of bytes.
 *
 * This encompasses both symmetric keys and non-key data.
 */
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
    (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
     ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)

/** Whether a key type is asymmetric: either a key pair or a public key. */
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type)                                \
    (((type) & PSA_KEY_TYPE_CATEGORY_MASK                               \
      & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) ==                            \
     PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
/** Whether a key type is the public part of a key pair. */
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type)                                \
    (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
/** Whether a key type is a key pair containing a private part and a public
 * part. */
#define PSA_KEY_TYPE_IS_KEY_PAIR(type)                                   \
    (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
/** The key pair type corresponding to a public key type.
 *
 * You may also pass a key pair type as \p type, it will be left unchanged.
 *
 * \param type      A public key type or key pair type.
 *
 * \return          The corresponding key pair type.
 *                  If \p type is not a public key or a key pair,
 *                  the return value is undefined.
 */
#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type)        \
    ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
/** The public key type corresponding to a key pair type.
 *
 * You may also pass a key pair type as \p type, it will be left unchanged.
 *
 * \param type      A public key type or key pair type.
 *
 * \return          The corresponding public key type.
 *                  If \p type is not a public key or a key pair,
 *                  the return value is undefined.
 */
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type)        \
    ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)

/** Raw data.
 *
 * A "key" of this type cannot be used for any cryptographic operation.
 * Applications may use this type to store arbitrary data in the keystore. */
#define PSA_KEY_TYPE_RAW_DATA                       ((psa_key_type_t)0x1001)

/** HMAC key.
 *
 * The key policy determines which underlying hash algorithm the key can be
 * used for.
 *
 * HMAC keys should generally have the same size as the underlying hash.
 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
#define PSA_KEY_TYPE_HMAC                           ((psa_key_type_t)0x1100)

/** A secret for key derivation.
 *
 * The key policy determines which key derivation algorithm the key
 * can be used for.
 */
#define PSA_KEY_TYPE_DERIVE                         ((psa_key_type_t)0x1200)

/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
 *
 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
 * 32 bytes (AES-256).
 */
#define PSA_KEY_TYPE_AES                            ((psa_key_type_t)0x2400)

/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
 *
 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
 * 24 bytes (3-key 3DES).
 *
 * Note that single DES and 2-key 3DES are weak and strongly
 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
 * is weak and deprecated and should only be used in legacy protocols.
 */
#define PSA_KEY_TYPE_DES                            ((psa_key_type_t)0x2301)

/** Key for a cipher, AEAD or MAC algorithm based on the
 * Camellia block cipher. */
#define PSA_KEY_TYPE_CAMELLIA                       ((psa_key_type_t)0x2403)

/** Key for the RC4 stream cipher.
 *
 * Note that RC4 is weak and deprecated and should only be used in
 * legacy protocols. */
#define PSA_KEY_TYPE_ARC4                           ((psa_key_type_t)0x2002)

/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
 *
 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
 *
 * Implementations must support 12-byte nonces, may support 8-byte nonces,
 * and should reject other sizes.
 */
#define PSA_KEY_TYPE_CHACHA20                       ((psa_key_type_t)0x2004)

/** RSA public key. */
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY                 ((psa_key_type_t)0x4001)
/** RSA key pair (private and public key). */
#define PSA_KEY_TYPE_RSA_KEY_PAIR                   ((psa_key_type_t)0x7001)
/** Whether a key type is an RSA key (pair or public-only). */
#define PSA_KEY_TYPE_IS_RSA(type)                                       \
    (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)

#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE            ((psa_key_type_t)0x4100)
#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE              ((psa_key_type_t)0x7100)
#define PSA_KEY_TYPE_ECC_CURVE_MASK                 ((psa_key_type_t)0x00ff)
/** Elliptic curve key pair.
 *
 * \param curve     A value of type ::psa_ecc_family_t that
 *                  identifies the ECC curve to be used.
 */
#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve)         \
    (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
/** Elliptic curve public key.
 *
 * \param curve     A value of type ::psa_ecc_family_t that
 *                  identifies the ECC curve to be used.
 */
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve)              \
    (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))

/** Whether a key type is an elliptic curve key (pair or public-only). */
#define PSA_KEY_TYPE_IS_ECC(type)                                       \
    ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
      ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
/** Whether a key type is an elliptic curve key pair. */
#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)                               \
    (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
     PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
/** Whether a key type is an elliptic curve public key. */
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type)                            \
    (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
     PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)

/** Extract the curve from an elliptic curve key type. */
#define PSA_KEY_TYPE_ECC_GET_FAMILY(type)                        \
    ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ?             \
                        ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
                        0))

/** SEC Koblitz curves over prime fields.
 *
 * This family comprises the following curves:
 * secp192k1, secp224k1, secp256k1.
 * They are defined in _Standards for Efficient Cryptography_,
 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
 * https://www.secg.org/sec2-v2.pdf
 */
#define PSA_ECC_FAMILY_SECP_K1           ((psa_ecc_family_t) 0x17)

/** SEC random curves over prime fields.
 *
 * This family comprises the following curves:
 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
 * They are defined in _Standards for Efficient Cryptography_,
 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
 * https://www.secg.org/sec2-v2.pdf
 */
#define PSA_ECC_FAMILY_SECP_R1           ((psa_ecc_family_t) 0x12)
/* SECP160R2 (SEC2 v1, obsolete) */
#define PSA_ECC_FAMILY_SECP_R2           ((psa_ecc_family_t) 0x1b)

/** SEC Koblitz curves over binary fields.
 *
 * This family comprises the following curves:
 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
 * They are defined in _Standards for Efficient Cryptography_,
 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
 * https://www.secg.org/sec2-v2.pdf
 */
#define PSA_ECC_FAMILY_SECT_K1           ((psa_ecc_family_t) 0x27)

/** SEC random curves over binary fields.
 *
 * This family comprises the following curves:
 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
 * They are defined in _Standards for Efficient Cryptography_,
 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
 * https://www.secg.org/sec2-v2.pdf
 */
#define PSA_ECC_FAMILY_SECT_R1           ((psa_ecc_family_t) 0x22)

/** SEC additional random curves over binary fields.
 *
 * This family comprises the following curve:
 * sect163r2.
 * It is defined in _Standards for Efficient Cryptography_,
 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
 * https://www.secg.org/sec2-v2.pdf
 */
#define PSA_ECC_FAMILY_SECT_R2           ((psa_ecc_family_t) 0x2b)

/** Brainpool P random curves.
 *
 * This family comprises the following curves:
 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
 * It is defined in RFC 5639.
 */
#define PSA_ECC_FAMILY_BRAINPOOL_P_R1    ((psa_ecc_family_t) 0x30)

/** Curve25519 and Curve448.
 *
 * This family comprises the following Montgomery curves:
 * - 255-bit: Bernstein et al.,
 *   _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
 *   The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
 * - 448-bit: Hamburg,
 *   _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
 *   The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
 */
#define PSA_ECC_FAMILY_MONTGOMERY        ((psa_ecc_family_t) 0x41)

#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE             ((psa_key_type_t)0x4200)
#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE               ((psa_key_type_t)0x7200)
#define PSA_KEY_TYPE_DH_GROUP_MASK                  ((psa_key_type_t)0x00ff)
/** Diffie-Hellman key pair.
 *
 * \param group     A value of type ::psa_dh_family_t that identifies the
 *                  Diffie-Hellman group to be used.
 */
#define PSA_KEY_TYPE_DH_KEY_PAIR(group)          \
    (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
/** Diffie-Hellman public key.
 *
 * \param group     A value of type ::psa_dh_family_t that identifies the
 *                  Diffie-Hellman group to be used.
 */
#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group)               \
    (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))

/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
#define PSA_KEY_TYPE_IS_DH(type)                                        \
    ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
      ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
/** Whether a key type is a Diffie-Hellman key pair. */
#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type)                               \
    (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
     PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
/** Whether a key type is a Diffie-Hellman public key. */
#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type)                            \
    (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
     PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)

/** Extract the group from a Diffie-Hellman key type. */
#define PSA_KEY_TYPE_DH_GET_FAMILY(type)                        \
    ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ?              \
                       ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) :  \
                       0))

/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
 *
 * This family includes groups with the following key sizes (in bits):
 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
 * all of these sizes or only a subset.
 */
#define PSA_DH_FAMILY_RFC7919            ((psa_dh_family_t) 0x03)

#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type)      \
    (((type) >> 8) & 7)
/** The block size of a block cipher.
 *
 * \param type  A cipher key type (value of type #psa_key_type_t).
 *
 * \return      The block size for a block cipher, or 1 for a stream cipher.
 *              The return value is undefined if \p type is not a supported
 *              cipher key type.
 *
 * \note It is possible to build stream cipher algorithms on top of a block
 *       cipher, for example CTR mode (#PSA_ALG_CTR).
 *       This macro only takes the key type into account, so it cannot be
 *       used to determine the size of the data that #psa_cipher_update()
 *       might buffer for future processing in general.
 *
 * \note This macro returns a compile-time constant if its argument is one.
 *
 * \warning This macro may evaluate its argument multiple times.
 */
#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type)            \
    (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
     1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) :                 \
     0u)

/** Vendor-defined algorithm flag.
 *
 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
 * bit set. Vendors who define additional algorithms must use an encoding with
 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
 * used by standard encodings whenever practical.
 */
#define PSA_ALG_VENDOR_FLAG                     ((psa_algorithm_t)0x80000000)

#define PSA_ALG_CATEGORY_MASK                   ((psa_algorithm_t)0x7f000000)
#define PSA_ALG_CATEGORY_HASH                   ((psa_algorithm_t)0x01000000)
#define PSA_ALG_CATEGORY_MAC                    ((psa_algorithm_t)0x02000000)
#define PSA_ALG_CATEGORY_CIPHER                 ((psa_algorithm_t)0x04000000)
#define PSA_ALG_CATEGORY_AEAD                   ((psa_algorithm_t)0x06000000)
#define PSA_ALG_CATEGORY_SIGN                   ((psa_algorithm_t)0x10000000)
#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION  ((psa_algorithm_t)0x12000000)
#define PSA_ALG_CATEGORY_KEY_DERIVATION         ((psa_algorithm_t)0x20000000)
#define PSA_ALG_CATEGORY_KEY_AGREEMENT          ((psa_algorithm_t)0x30000000)

/** Whether an algorithm is vendor-defined.
 *
 * See also #PSA_ALG_VENDOR_FLAG.
 */
#define PSA_ALG_IS_VENDOR_DEFINED(alg)                                  \
    (((alg) & PSA_ALG_VENDOR_FLAG) != 0)

/** Whether the specified algorithm is a hash algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_HASH(alg)                                            \
    (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)

/** Whether the specified algorithm is a MAC algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_MAC(alg)                                             \
    (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)

/** Whether the specified algorithm is a symmetric cipher algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_CIPHER(alg)                                          \
    (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)

/** Whether the specified algorithm is an authenticated encryption
 * with associated data (AEAD) algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_AEAD(alg)                                            \
    (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)

/** Whether the specified algorithm is an asymmetric signature algorithm,
 * also known as public-key signature algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_SIGN(alg)                                            \
    (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)

/** Whether the specified algorithm is an asymmetric encryption algorithm,
 * also known as public-key encryption algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg)                           \
    (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)

/** Whether the specified algorithm is a key agreement algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_KEY_AGREEMENT(alg)                                   \
    (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)

/** Whether the specified algorithm is a key derivation algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_KEY_DERIVATION(alg)                                  \
    (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)

#define PSA_ALG_HASH_MASK                       ((psa_algorithm_t)0x000000ff)
/** MD2 */
#define PSA_ALG_MD2                             ((psa_algorithm_t)0x01000001)
/** MD4 */
#define PSA_ALG_MD4                             ((psa_algorithm_t)0x01000002)
/** MD5 */
#define PSA_ALG_MD5                             ((psa_algorithm_t)0x01000003)
/** PSA_ALG_RIPEMD160 */
#define PSA_ALG_RIPEMD160                       ((psa_algorithm_t)0x01000004)
/** SHA1 */
#define PSA_ALG_SHA_1                           ((psa_algorithm_t)0x01000005)
/** SHA2-224 */
#define PSA_ALG_SHA_224                         ((psa_algorithm_t)0x01000008)
/** SHA2-256 */
#define PSA_ALG_SHA_256                         ((psa_algorithm_t)0x01000009)
/** SHA2-384 */
#define PSA_ALG_SHA_384                         ((psa_algorithm_t)0x0100000a)
/** SHA2-512 */
#define PSA_ALG_SHA_512                         ((psa_algorithm_t)0x0100000b)
/** SHA2-512/224 */
#define PSA_ALG_SHA_512_224                     ((psa_algorithm_t)0x0100000c)
/** SHA2-512/256 */
#define PSA_ALG_SHA_512_256                     ((psa_algorithm_t)0x0100000d)
/** SHA3-224 */
#define PSA_ALG_SHA3_224                        ((psa_algorithm_t)0x01000010)
/** SHA3-256 */
#define PSA_ALG_SHA3_256                        ((psa_algorithm_t)0x01000011)
/** SHA3-384 */
#define PSA_ALG_SHA3_384                        ((psa_algorithm_t)0x01000012)
/** SHA3-512 */
#define PSA_ALG_SHA3_512                        ((psa_algorithm_t)0x01000013)

/** In a hash-and-sign algorithm policy, allow any hash algorithm.
 *
 * This value may be used to form the algorithm usage field of a policy
 * for a signature algorithm that is parametrized by a hash. The key
 * may then be used to perform operations using the same signature
 * algorithm parametrized with any supported hash.
 *
 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
 * Then you may create and use a key as follows:
 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
 *   ```
 *   psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
 *   psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
 *   ```
 * - Import or generate key material.
 * - Call psa_sign_hash() or psa_verify_hash(), passing
 *   an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
 *   call to sign or verify a message may use a different hash.
 *   ```
 *   psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
 *   psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
 *   psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
 *   ```
 *
 * This value may not be used to build other algorithms that are
 * parametrized over a hash. For any valid use of this macro to build
 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
 *
 * This value may not be used to build an algorithm specification to
 * perform an operation. It is only valid to build policies.
 */
#define PSA_ALG_ANY_HASH                        ((psa_algorithm_t)0x010000ff)

#define PSA_ALG_MAC_SUBCATEGORY_MASK            ((psa_algorithm_t)0x00c00000)
#define PSA_ALG_HMAC_BASE                       ((psa_algorithm_t)0x02800000)
/** Macro to build an HMAC algorithm.
 *
 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
 *
 * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
 *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
 *
 * \return              The corresponding HMAC algorithm.
 * \return              Unspecified if \p hash_alg is not a supported
 *                      hash algorithm.
 */
#define PSA_ALG_HMAC(hash_alg)                                  \
    (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))

#define PSA_ALG_HMAC_GET_HASH(hmac_alg)                             \
    (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))

/** Whether the specified algorithm is an HMAC algorithm.
 *
 * HMAC is a family of MAC algorithms that are based on a hash function.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_HMAC(alg)                                            \
    (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
     PSA_ALG_HMAC_BASE)

/* In the encoding of a MAC algorithm, the bits corresponding to
 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
 * truncated. As an exception, the value 0 means the untruncated algorithm,
 * whatever its length is. The length is encoded in 6 bits, so it can
 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
 * to full length is correctly encoded as 0 and any non-trivial truncation
 * is correctly encoded as a value between 1 and 63. */
#define PSA_ALG_MAC_TRUNCATION_MASK             ((psa_algorithm_t)0x00003f00)
#define PSA_MAC_TRUNCATION_OFFSET 8

/** Macro to build a truncated MAC algorithm.
 *
 * A truncated MAC algorithm is identical to the corresponding MAC
 * algorithm except that the MAC value for the truncated algorithm
 * consists of only the first \p mac_length bytes of the MAC value
 * for the untruncated algorithm.
 *
 * \note    This macro may allow constructing algorithm identifiers that
 *          are not valid, either because the specified length is larger
 *          than the untruncated MAC or because the specified length is
 *          smaller than permitted by the implementation.
 *
 * \note    It is implementation-defined whether a truncated MAC that
 *          is truncated to the same length as the MAC of the untruncated
 *          algorithm is considered identical to the untruncated algorithm
 *          for policy comparison purposes.
 *
 * \param mac_alg       A MAC algorithm identifier (value of type
 *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
 *                      is true). This may be a truncated or untruncated
 *                      MAC algorithm.
 * \param mac_length    Desired length of the truncated MAC in bytes.
 *                      This must be at most the full length of the MAC
 *                      and must be at least an implementation-specified
 *                      minimum. The implementation-specified minimum
 *                      shall not be zero.
 *
 * \return              The corresponding MAC algorithm with the specified
 *                      length.
 * \return              Unspecified if \p alg is not a supported
 *                      MAC algorithm or if \p mac_length is too small or
 *                      too large for the specified MAC algorithm.
 */
#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length)                      \
    (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) |                       \
     ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))

/** Macro to build the base MAC algorithm corresponding to a truncated
 * MAC algorithm.
 *
 * \param mac_alg       A MAC algorithm identifier (value of type
 *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
 *                      is true). This may be a truncated or untruncated
 *                      MAC algorithm.
 *
 * \return              The corresponding base MAC algorithm.
 * \return              Unspecified if \p alg is not a supported
 *                      MAC algorithm.
 */
#define PSA_ALG_FULL_LENGTH_MAC(mac_alg)        \
    ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)

/** Length to which a MAC algorithm is truncated.
 *
 * \param mac_alg       A MAC algorithm identifier (value of type
 *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
 *                      is true).
 *
 * \return              Length of the truncated MAC in bytes.
 * \return              0 if \p alg is a non-truncated MAC algorithm.
 * \return              Unspecified if \p alg is not a supported
 *                      MAC algorithm.
 */
#define PSA_MAC_TRUNCATED_LENGTH(mac_alg)                               \
    (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)

#define PSA_ALG_CIPHER_MAC_BASE                 ((psa_algorithm_t)0x02c00000)
/** The CBC-MAC construction over a block cipher
 *
 * \warning CBC-MAC is insecure in many cases.
 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
 */
#define PSA_ALG_CBC_MAC                         ((psa_algorithm_t)0x02c00001)
/** The CMAC construction over a block cipher */
#define PSA_ALG_CMAC                            ((psa_algorithm_t)0x02c00002)

/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg)                                \
    (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
     PSA_ALG_CIPHER_MAC_BASE)

#define PSA_ALG_CIPHER_STREAM_FLAG              ((psa_algorithm_t)0x00800000)
#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG          ((psa_algorithm_t)0x00400000)

/** Whether the specified algorithm is a stream cipher.
 *
 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
 * by applying a bitwise-xor with a stream of bytes that is generated
 * from a key.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier or if it is not a symmetric cipher algorithm.
 */
#define PSA_ALG_IS_STREAM_CIPHER(alg)            \
    (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
        (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))

/** The ARC4 stream cipher algorithm.
 */
#define PSA_ALG_ARC4                            ((psa_algorithm_t)0x04800001)

/** The ChaCha20 stream cipher.
 *
 * ChaCha20 is defined in RFC 7539.
 *
 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
 * must be 12.
 *
 * The initial block counter is always 0.
 *
 */
#define PSA_ALG_CHACHA20                        ((psa_algorithm_t)0x04800005)

/** The CTR stream cipher mode.
 *
 * CTR is a stream cipher which is built from a block cipher.
 * The underlying block cipher is determined by the key type.
 * For example, to use AES-128-CTR, use this algorithm with
 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
 */
#define PSA_ALG_CTR                             ((psa_algorithm_t)0x04c00001)

/** The CFB stream cipher mode.
 *
 * The underlying block cipher is determined by the key type.
 */
#define PSA_ALG_CFB                             ((psa_algorithm_t)0x04c00002)

/** The OFB stream cipher mode.
 *
 * The underlying block cipher is determined by the key type.
 */
#define PSA_ALG_OFB                             ((psa_algorithm_t)0x04c00003)

/** The XTS cipher mode.
 *
 * XTS is a cipher mode which is built from a block cipher. It requires at
 * least one full block of input, but beyond this minimum the input
 * does not need to be a whole number of blocks.
 */
#define PSA_ALG_XTS                             ((psa_algorithm_t)0x044000ff)

/** The CBC block cipher chaining mode, with no padding.
 *
 * The underlying block cipher is determined by the key type.
 *
 * This symmetric cipher mode can only be used with messages whose lengths
 * are whole number of blocks for the chosen block cipher.
 */
#define PSA_ALG_CBC_NO_PADDING                  ((psa_algorithm_t)0x04600100)

/** The CBC block cipher chaining mode with PKCS#7 padding.
 *
 * The underlying block cipher is determined by the key type.
 *
 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
 */
#define PSA_ALG_CBC_PKCS7                       ((psa_algorithm_t)0x04600101)

#define PSA_ALG_AEAD_FROM_BLOCK_FLAG            ((psa_algorithm_t)0x00400000)

/** Whether the specified algorithm is an AEAD mode on a block cipher.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
 *         a block cipher, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg)    \
    (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
     (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))

/** The CCM authenticated encryption algorithm.
 *
 * The underlying block cipher is determined by the key type.
 */
#define PSA_ALG_CCM                             ((psa_algorithm_t)0x06401001)

/** The GCM authenticated encryption algorithm.
 *
 * The underlying block cipher is determined by the key type.
 */
#define PSA_ALG_GCM                             ((psa_algorithm_t)0x06401002)

/** The Chacha20-Poly1305 AEAD algorithm.
 *
 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
 *
 * Implementations must support 12-byte nonces, may support 8-byte nonces,
 * and should reject other sizes.
 *
 * Implementations must support 16-byte tags and should reject other sizes.
 */
#define PSA_ALG_CHACHA20_POLY1305               ((psa_algorithm_t)0x06001005)

/* In the encoding of a AEAD algorithm, the bits corresponding to
 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
 * The constants for default lengths follow this encoding.
 */
#define PSA_ALG_AEAD_TAG_LENGTH_MASK            ((psa_algorithm_t)0x00003f00)
#define PSA_AEAD_TAG_LENGTH_OFFSET 8

/** Macro to build a shortened AEAD algorithm.
 *
 * A shortened AEAD algorithm is similar to the corresponding AEAD
 * algorithm, but has an authentication tag that consists of fewer bytes.
 * Depending on the algorithm, the tag length may affect the calculation
 * of the ciphertext.
 *
 * \param aead_alg      An AEAD algorithm identifier (value of type
 *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
 *                      is true).
 * \param tag_length    Desired length of the authentication tag in bytes.
 *
 * \return              The corresponding AEAD algorithm with the specified
 *                      length.
 * \return              Unspecified if \p alg is not a supported
 *                      AEAD algorithm or if \p tag_length is not valid
 *                      for the specified AEAD algorithm.
 */
#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length)              \
    (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) |                     \
     ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET &                      \
      PSA_ALG_AEAD_TAG_LENGTH_MASK))

/** Calculate the corresponding AEAD algorithm with the default tag length.
 *
 * \param aead_alg      An AEAD algorithm (\c PSA_ALG_XXX value such that
 *                      #PSA_ALG_IS_AEAD(\p alg) is true).
 *
 * \return              The corresponding AEAD algorithm with the default
 *                      tag length for that algorithm.
 */
#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg)                   \
    (                                                                    \
        PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
        PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
        PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
        0)
#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref)         \
    PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) ==                         \
    PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ?                               \
    ref :

#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE          ((psa_algorithm_t)0x10020000)
/** RSA PKCS#1 v1.5 signature with hashing.
 *
 * This is the signature scheme defined by RFC 8017
 * (PKCS#1: RSA Cryptography Specifications) under the name
 * RSASSA-PKCS1-v1_5.
 *
 * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
 *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
 *                      This includes #PSA_ALG_ANY_HASH
 *                      when specifying the algorithm in a usage policy.
 *
 * \return              The corresponding RSA PKCS#1 v1.5 signature algorithm.
 * \return              Unspecified if \p hash_alg is not a supported
 *                      hash algorithm.
 */
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg)                             \
    (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** Raw PKCS#1 v1.5 signature.
 *
 * The input to this algorithm is the DigestInfo structure used by
 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
 * steps 3&ndash;6.
 */
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg)                               \
    (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)

#define PSA_ALG_RSA_PSS_BASE               ((psa_algorithm_t)0x10030000)
/** RSA PSS signature with hashing.
 *
 * This is the signature scheme defined by RFC 8017
 * (PKCS#1: RSA Cryptography Specifications) under the name
 * RSASSA-PSS, with the message generation function MGF1, and with
 * a salt length equal to the length of the hash. The specified
 * hash algorithm is used to hash the input message, to create the
 * salted hash, and for the mask generation.
 *
 * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
 *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
 *                      This includes #PSA_ALG_ANY_HASH
 *                      when specifying the algorithm in a usage policy.
 *
 * \return              The corresponding RSA PSS signature algorithm.
 * \return              Unspecified if \p hash_alg is not a supported
 *                      hash algorithm.
 */
#define PSA_ALG_RSA_PSS(hash_alg)                               \
    (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_IS_RSA_PSS(alg)                                 \
    (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)

#define PSA_ALG_ECDSA_BASE                      ((psa_algorithm_t)0x10060000)
/** ECDSA signature with hashing.
 *
 * This is the ECDSA signature scheme defined by ANSI X9.62,
 * with a random per-message secret number (*k*).
 *
 * The representation of the signature as a byte string consists of
 * the concatentation of the signature values *r* and *s*. Each of
 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
 * of the base point of the curve in octets. Each value is represented
 * in big-endian order (most significant octet first).
 *
 * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
 *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
 *                      This includes #PSA_ALG_ANY_HASH
 *                      when specifying the algorithm in a usage policy.
 *
 * \return              The corresponding ECDSA signature algorithm.
 * \return              Unspecified if \p hash_alg is not a supported
 *                      hash algorithm.
 */
#define PSA_ALG_ECDSA(hash_alg)                                 \
    (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** ECDSA signature without hashing.
 *
 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
 * without specifying a hash algorithm. This algorithm may only be
 * used to sign or verify a sequence of bytes that should be an
 * already-calculated hash. Note that the input is padded with
 * zeros on the left or truncated on the left as required to fit
 * the curve size.
 */
#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
#define PSA_ALG_DETERMINISTIC_ECDSA_BASE        ((psa_algorithm_t)0x10070000)
/** Deterministic ECDSA signature with hashing.
 *
 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
 *
 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
 *
 * Note that when this algorithm is used for verification, signatures
 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
 * same private key are accepted. In other words,
 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
 *
 * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
 *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
 *                      This includes #PSA_ALG_ANY_HASH
 *                      when specifying the algorithm in a usage policy.
 *
 * \return              The corresponding deterministic ECDSA signature
 *                      algorithm.
 * \return              Unspecified if \p hash_alg is not a supported
 *                      hash algorithm.
 */
#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg)                           \
    (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG        ((psa_algorithm_t)0x00010000)
#define PSA_ALG_IS_ECDSA(alg)                                           \
    (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) ==  \
     PSA_ALG_ECDSA_BASE)
#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)             \
    (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg)                             \
    (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg)                                \
    (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))

/** Whether the specified algorithm is a hash-and-sign algorithm.
 *
 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
 * structured in two parts: first the calculation of a hash in a way that
 * does not depend on the key, then the calculation of a signature from the
 * hash value and the key.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_HASH_AND_SIGN(alg)                                   \
    (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) ||    \
     PSA_ALG_IS_ECDSA(alg))

/** Get the hash used by a hash-and-sign signature algorithm.
 *
 * A hash-and-sign algorithm is a signature algorithm which is
 * composed of two phases: first a hashing phase which does not use
 * the key and produces a hash of the input message, then a signing
 * phase which only uses the hash and the key and not the message
 * itself.
 *
 * \param alg   A signature algorithm (\c PSA_ALG_XXX value such that
 *              #PSA_ALG_IS_SIGN(\p alg) is true).
 *
 * \return      The underlying hash algorithm if \p alg is a hash-and-sign
 *              algorithm.
 * \return      0 if \p alg is a signature algorithm that does not
 *              follow the hash-and-sign structure.
 * \return      Unspecified if \p alg is not a signature algorithm or
 *              if it is not supported by the implementation.
 */
#define PSA_ALG_SIGN_GET_HASH(alg)                                     \
    (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                                   \
     ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 :        \
     ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :             \
     0)

/** RSA PKCS#1 v1.5 encryption.
 */
#define PSA_ALG_RSA_PKCS1V15_CRYPT              ((psa_algorithm_t)0x12020000)

#define PSA_ALG_RSA_OAEP_BASE                   ((psa_algorithm_t)0x12030000)
/** RSA OAEP encryption.
 *
 * This is the encryption scheme defined by RFC 8017
 * (PKCS#1: RSA Cryptography Specifications) under the name
 * RSAES-OAEP, with the message generation function MGF1.
 *
 * \param hash_alg      The hash algorithm (\c PSA_ALG_XXX value such that
 *                      #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
 *                      for MGF1.
 *
 * \return              The corresponding RSA OAEP encryption algorithm.
 * \return              Unspecified if \p hash_alg is not a supported
 *                      hash algorithm.
 */
#define PSA_ALG_RSA_OAEP(hash_alg)                              \
    (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_IS_RSA_OAEP(alg)                                \
    (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
#define PSA_ALG_RSA_OAEP_GET_HASH(alg)                          \
    (PSA_ALG_IS_RSA_OAEP(alg) ?                                 \
     ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :      \
     0)

#define PSA_ALG_HKDF_BASE                       ((psa_algorithm_t)0x20000100)
/** Macro to build an HKDF algorithm.
 *
 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
 *
 * This key derivation algorithm uses the following inputs:
 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
 *   It is optional; if omitted, the derivation uses an empty salt.
 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
 * starting to generate output.
 *
 * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
 *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
 *
 * \return              The corresponding HKDF algorithm.
 * \return              Unspecified if \p hash_alg is not a supported
 *                      hash algorithm.
 */
#define PSA_ALG_HKDF(hash_alg)                                  \
    (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** Whether the specified algorithm is an HKDF algorithm.
 *
 * HKDF is a family of key derivation algorithms that are based on a hash
 * function and the HMAC construction.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \c alg is not a supported
 *         key derivation algorithm identifier.
 */
#define PSA_ALG_IS_HKDF(alg)                            \
    (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
#define PSA_ALG_HKDF_GET_HASH(hkdf_alg)                         \
    (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))

#define PSA_ALG_TLS12_PRF_BASE                  ((psa_algorithm_t)0x20000200)
/** Macro to build a TLS-1.2 PRF algorithm.
 *
 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
 * used with either SHA-256 or SHA-384.
 *
 * This key derivation algorithm uses the following inputs, which must be
 * passed in the order given here:
 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
 *
 * For the application to TLS-1.2 key expansion, the seed is the
 * concatenation of ServerHello.Random + ClientHello.Random,
 * and the label is "key expansion".
 *
 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
 * TLS 1.2 PRF using HMAC-SHA-256.
 *
 * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
 *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
 *
 * \return              The corresponding TLS-1.2 PRF algorithm.
 * \return              Unspecified if \p hash_alg is not a supported
 *                      hash algorithm.
 */
#define PSA_ALG_TLS12_PRF(hash_alg)                                  \
    (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))

/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \c alg is not a supported
 *         key derivation algorithm identifier.
 */
#define PSA_ALG_IS_TLS12_PRF(alg)                                    \
    (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg)                         \
    (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))

#define PSA_ALG_TLS12_PSK_TO_MS_BASE            ((psa_algorithm_t)0x20000300)
/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
 *
 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
 * from the PreSharedKey (PSK) through the application of padding
 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
 * The latter is based on HMAC and can be used with either SHA-256
 * or SHA-384.
 *
 * This key derivation algorithm uses the following inputs, which must be
 * passed in the order given here:
 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
 *
 * For the application to TLS-1.2, the seed (which is
 * forwarded to the TLS-1.2 PRF) is the concatenation of the
 * ClientHello.Random + ServerHello.Random,
 * and the label is "master secret" or "extended master secret".
 *
 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
 *
 * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
 *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
 *
 * \return              The corresponding TLS-1.2 PSK to MS algorithm.
 * \return              Unspecified if \p hash_alg is not a supported
 *                      hash algorithm.
 */
#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg)                                  \
    (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))

/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \c alg is not a supported
 *         key derivation algorithm identifier.
 */
#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg)                                    \
    (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg)                         \
    (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))

#define PSA_ALG_KEY_DERIVATION_MASK             ((psa_algorithm_t)0x0803ffff)
#define PSA_ALG_KEY_AGREEMENT_MASK              ((psa_algorithm_t)0x10fc0000)

/** Macro to build a combined algorithm that chains a key agreement with
 * a key derivation.
 *
 * \param ka_alg        A key agreement algorithm (\c PSA_ALG_XXX value such
 *                      that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
 * \param kdf_alg       A key derivation algorithm (\c PSA_ALG_XXX value such
 *                      that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
 *
 * \return              The corresponding key agreement and derivation
 *                      algorithm.
 * \return              Unspecified if \p ka_alg is not a supported
 *                      key agreement algorithm or \p kdf_alg is not a
 *                      supported key derivation algorithm.
 */
#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg)  \
    ((ka_alg) | (kdf_alg))

#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg)                              \
    (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)

#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg)                             \
    (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)

/** Whether the specified algorithm is a raw key agreement algorithm.
 *
 * A raw key agreement algorithm is one that does not specify
 * a key derivation function.
 * Usually, raw key agreement algorithms are constructed directly with
 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
 * constructed with PSA_ALG_KEY_AGREEMENT().
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \p alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg)                               \
    (PSA_ALG_IS_KEY_AGREEMENT(alg) &&                                   \
     PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)

#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg)     \
    ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))

/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
 *
 * The shared secret produced by key agreement is
 * `g^{ab}` in big-endian format.
 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
 * in bits.
 */
#define PSA_ALG_FFDH                            ((psa_algorithm_t)0x30100000)

/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
 *
 * This includes the raw finite field Diffie-Hellman algorithm as well as
 * finite-field Diffie-Hellman followed by any supporter key derivation
 * algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
 *         This macro may return either 0 or 1 if \c alg is not a supported
 *         key agreement algorithm identifier.
 */
#define PSA_ALG_IS_FFDH(alg) \
    (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)

/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
 *
 * The shared secret produced by key agreement is the x-coordinate of
 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
 * `m` is the bit size associated with the curve, i.e. the bit size of the
 * order of the curve's coordinate field. When `m` is not a multiple of 8,
 * the byte containing the most significant bit of the shared secret
 * is padded with zero bits. The byte order is either little-endian
 * or big-endian depending on the curve type.
 *
 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
 *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
 *   in little-endian byte order.
 *   The bit size is 448 for Curve448 and 255 for Curve25519.
 * - For Weierstrass curves over prime fields (curve types
 *   `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
 *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
 *   in big-endian byte order.
 *   The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
 * - For Weierstrass curves over binary fields (curve types
 *   `PSA_ECC_FAMILY_SECTXXX`),
 *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
 *   in big-endian byte order.
 *   The bit size is `m` for the field `F_{2^m}`.
 */
#define PSA_ALG_ECDH                            ((psa_algorithm_t)0x30200000)

/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
 * algorithm.
 *
 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
 * elliptic curve Diffie-Hellman followed by any supporter key derivation
 * algorithm.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
 *         0 otherwise.
 *         This macro may return either 0 or 1 if \c alg is not a supported
 *         key agreement algorithm identifier.
 */
#define PSA_ALG_IS_ECDH(alg) \
    (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)

/** Whether the specified algorithm encoding is a wildcard.
 *
 * Wildcard values may only be used to set the usage algorithm field in
 * a policy, not to perform an operation.
 *
 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
 *
 * \return 1 if \c alg is a wildcard algorithm encoding.
 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
 *         an operation).
 * \return This macro may return either 0 or 1 if \c alg is not a supported
 *         algorithm identifier.
 */
#define PSA_ALG_IS_WILDCARD(alg)                        \
    (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                    \
     PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH :   \
     (alg) == PSA_ALG_ANY_HASH)

/**@}*/

/** \defgroup key_lifetimes Key lifetimes
 * @{
 */

/** The default lifetime for volatile keys.
 *
 * A volatile key only exists as long as the handle to it is not closed.
 * The key material is guaranteed to be erased on a power reset.
 *
 * A key with this lifetime is typically stored in the RAM area of the
 * PSA Crypto subsystem. However this is an implementation choice.
 * If an implementation stores data about the key in a non-volatile memory,
 * it must release all the resources associated with the key and erase the
 * key material if the calling application terminates.
 */
#define PSA_KEY_LIFETIME_VOLATILE               ((psa_key_lifetime_t)0x00000000)

/** The default lifetime for persistent keys.
 *
 * A persistent key remains in storage until it is explicitly destroyed or
 * until the corresponding storage area is wiped. This specification does
 * not define any mechanism to wipe a storage area, but implementations may
 * provide their own mechanism (for example to perform a factory reset,
 * to prepare for device refurbishment, or to uninstall an application).
 *
 * This lifetime value is the default storage area for the calling
 * application. Implementations may offer other storage areas designated
 * by other lifetime values as implementation-specific extensions.
 * See ::psa_key_lifetime_t for more information.
 */
#define PSA_KEY_LIFETIME_PERSISTENT             ((psa_key_lifetime_t)0x00000001)

/** The persistence level of volatile keys.
 *
 * See ::psa_key_persistence_t for more information.
 */
#define PSA_KEY_PERSISTENCE_VOLATILE            ((psa_key_persistence_t)0x00)

/** The default persistence level for persistent keys.
 *
 * See ::psa_key_persistence_t for more information.
 */
#define PSA_KEY_PERSISTENCE_DEFAULT             ((psa_key_persistence_t)0x01)

/** A persistence level indicating that a key is never destroyed.
 *
 * See ::psa_key_persistence_t for more information.
 */
#define PSA_KEY_PERSISTENCE_READ_ONLY           ((psa_key_persistence_t)0xff)

#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime)      \
    ((psa_key_persistence_t)((lifetime) & 0x000000ff))

#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime)      \
    ((psa_key_location_t)((lifetime) >> 8))

/** Whether a key lifetime indicates that the key is volatile.
 *
 * A volatile key is automatically destroyed by the implementation when
 * the application instance terminates. In particular, a volatile key
 * is automatically destroyed on a power reset of the device.
 *
 * A key that is not volatile is persistent. Persistent keys are
 * preserved until the application explicitly destroys them or until an
 * implementation-specific device management event occurs (for example,
 * a factory reset).
 *
 * \param lifetime      The lifetime value to query (value of type
 *                      ::psa_key_lifetime_t).
 *
 * \return \c 1 if the key is volatile, otherwise \c 0.
 */
#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)  \
    (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
     PSA_KEY_PERSISTENCE_VOLATILE)

/** Construct a lifetime from a persistence level and a location.
 *
 * \param persistence   The persistence level
 *                      (value of type ::psa_key_persistence_t).
 * \param location      The location indicator
 *                      (value of type ::psa_key_location_t).
 *
 * \return The constructed lifetime value.
 */
#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
    ((location) << 8 | (persistence))

/** The local storage area for persistent keys.
 *
 * This storage area is available on all systems that can store persistent
 * keys without delegating the storage to a third-party cryptoprocessor.
 *
 * See ::psa_key_location_t for more information.
 */
#define PSA_KEY_LOCATION_LOCAL_STORAGE          ((psa_key_location_t)0x000000)

#define PSA_KEY_LOCATION_VENDOR_FLAG            ((psa_key_location_t)0x800000)

/** The minimum value for a key identifier chosen by the application.
 */
#define PSA_KEY_ID_USER_MIN                     ((psa_key_id_t)0x00000001)
/** The maximum value for a key identifier chosen by the application.
 */
#define PSA_KEY_ID_USER_MAX                     ((psa_key_id_t)0x3fffffff)
/** The minimum value for a key identifier chosen by the implementation.
 */
#define PSA_KEY_ID_VENDOR_MIN                   ((psa_key_id_t)0x40000000)
/** The maximum value for a key identifier chosen by the implementation.
 */
#define PSA_KEY_ID_VENDOR_MAX                   ((psa_key_id_t)0x7fffffff)

/**@}*/

/** \defgroup policy Key policies
 * @{
 */

/** Whether the key may be exported.
 *
 * A public key or the public part of a key pair may always be exported
 * regardless of the value of this permission flag.
 *
 * If a key does not have export permission, implementations shall not
 * allow the key to be exported in plain form from the cryptoprocessor,
 * whether through psa_export_key() or through a proprietary interface.
 * The key may however be exportable in a wrapped form, i.e. in a form
 * where it is encrypted by another key.
 */
#define PSA_KEY_USAGE_EXPORT                    ((psa_key_usage_t)0x00000001)

/** Whether the key may be copied.
 *
 * This flag allows the use of psa_copy_key() to make a copy of the key
 * with the same policy or a more restrictive policy.
 *
 * For lifetimes for which the key is located in a secure element which
 * enforce the non-exportability of keys, copying a key outside the secure
 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
 * Copying the key inside the secure element is permitted with just
 * #PSA_KEY_USAGE_COPY if the secure element supports it.
 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
 * is sufficient to permit the copy.
 */
#define PSA_KEY_USAGE_COPY                      ((psa_key_usage_t)0x00000002)

/** Whether the key may be used to encrypt a message.
 *
 * This flag allows the key to be used for a symmetric encryption operation,
 * for an AEAD encryption-and-authentication operation,
 * or for an asymmetric encryption operation,
 * if otherwise permitted by the key's type and policy.
 *
 * For a key pair, this concerns the public key.
 */
#define PSA_KEY_USAGE_ENCRYPT                   ((psa_key_usage_t)0x00000100)

/** Whether the key may be used to decrypt a message.
 *
 * This flag allows the key to be used for a symmetric decryption operation,
 * for an AEAD decryption-and-verification operation,
 * or for an asymmetric decryption operation,
 * if otherwise permitted by the key's type and policy.
 *
 * For a key pair, this concerns the private key.
 */
#define PSA_KEY_USAGE_DECRYPT                   ((psa_key_usage_t)0x00000200)

/** Whether the key may be used to sign a message.
 *
 * This flag allows the key to be used for a MAC calculation operation
 * or for an asymmetric signature operation,
 * if otherwise permitted by the key's type and policy.
 *
 * For a key pair, this concerns the private key.
 */
#define PSA_KEY_USAGE_SIGN_HASH                 ((psa_key_usage_t)0x00000400)

/** Whether the key may be used to verify a message signature.
 *
 * This flag allows the key to be used for a MAC verification operation
 * or for an asymmetric signature verification operation,
 * if otherwise permitted by by the key's type and policy.
 *
 * For a key pair, this concerns the public key.
 */
#define PSA_KEY_USAGE_VERIFY_HASH               ((psa_key_usage_t)0x00000800)

/** Whether the key may be used to derive other keys.
 */
#define PSA_KEY_USAGE_DERIVE                    ((psa_key_usage_t)0x00001000)

/**@}*/

/** \defgroup derivation Key derivation
 * @{
 */

/** A secret input for key derivation.
 *
 * This should be a key of type #PSA_KEY_TYPE_DERIVE
 * (passed to psa_key_derivation_input_key())
 * or the shared secret resulting from a key agreement
 * (obtained via psa_key_derivation_key_agreement()).
 *
 * The secret can also be a direct input (passed to
 * key_derivation_input_bytes()). In this case, the derivation operation
 * may not be used to derive keys: the operation will only allow
 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
 */
#define PSA_KEY_DERIVATION_INPUT_SECRET     ((psa_key_derivation_step_t)0x0101)

/** A label for key derivation.
 *
 * This should be a direct input.
 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
 */
#define PSA_KEY_DERIVATION_INPUT_LABEL      ((psa_key_derivation_step_t)0x0201)

/** A salt for key derivation.
 *
 * This should be a direct input.
 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
 */
#define PSA_KEY_DERIVATION_INPUT_SALT       ((psa_key_derivation_step_t)0x0202)

/** An information string for key derivation.
 *
 * This should be a direct input.
 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
 */
#define PSA_KEY_DERIVATION_INPUT_INFO       ((psa_key_derivation_step_t)0x0203)

/** A seed for key derivation.
 *
 * This should be a direct input.
 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
 */
#define PSA_KEY_DERIVATION_INPUT_SEED       ((psa_key_derivation_step_t)0x0204)

/**@}*/

#endif /* PSA_CRYPTO_VALUES_H */