blob: 8f88e2887b2cd3eaa714e621ecc6c8ae1c8b0bbb [file] [log] [blame]
/*
* Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <context.h>
#include <cortex_a57.h>
#include <denver.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/psci/psci.h>
#include <plat/common/platform.h>
#include <bpmp_ipc.h>
#include <mce.h>
#include <memctrl_v2.h>
#include <security_engine.h>
#include <smmu.h>
#include <t18x_ari.h>
#include <tegra186_private.h>
#include <tegra_private.h>
extern void memcpy16(void *dest, const void *src, unsigned int length);
/* state id mask */
#define TEGRA186_STATE_ID_MASK 0xFU
/* constants to get power state's wake time */
#define TEGRA186_WAKE_TIME_MASK 0x0FFFFFF0U
#define TEGRA186_WAKE_TIME_SHIFT 4U
/* default core wake mask for CPU_SUSPEND */
#define TEGRA186_CORE_WAKE_MASK 0x180cU
/* context size to save during system suspend */
#define TEGRA186_SE_CONTEXT_SIZE 3U
static uint32_t se_regs[TEGRA186_SE_CONTEXT_SIZE];
static struct tegra_psci_percpu_data {
uint32_t wake_time;
} __aligned(CACHE_WRITEBACK_GRANULE) tegra_percpu_data[PLATFORM_CORE_COUNT];
int32_t tegra_soc_validate_power_state(uint32_t power_state,
psci_power_state_t *req_state)
{
uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) & TEGRA186_STATE_ID_MASK;
uint32_t cpu = plat_my_core_pos();
int32_t ret = PSCI_E_SUCCESS;
/* save the core wake time (in TSC ticks)*/
tegra_percpu_data[cpu].wake_time = (power_state & TEGRA186_WAKE_TIME_MASK)
<< TEGRA186_WAKE_TIME_SHIFT;
/*
* Clean percpu_data[cpu] to DRAM. This needs to be done to ensure that
* the correct value is read in tegra_soc_pwr_domain_suspend(), which
* is called with caches disabled. It is possible to read a stale value
* from DRAM in that function, because the L2 cache is not flushed
* unless the cluster is entering CC6/CC7.
*/
clean_dcache_range((uint64_t)&tegra_percpu_data[cpu],
sizeof(tegra_percpu_data[cpu]));
/* Sanity check the requested state id */
switch (state_id) {
case PSTATE_ID_CORE_IDLE:
case PSTATE_ID_CORE_POWERDN:
if (psci_get_pstate_type(power_state) != PSTATE_TYPE_POWERDOWN) {
ret = PSCI_E_INVALID_PARAMS;
break;
}
/* Core powerdown request */
req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id;
req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id;
break;
default:
ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
ret = PSCI_E_INVALID_PARAMS;
break;
}
return ret;
}
int32_t tegra_soc_cpu_standby(plat_local_state_t cpu_state)
{
(void)cpu_state;
return PSCI_E_SUCCESS;
}
int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
{
const plat_local_state_t *pwr_domain_state;
uint8_t stateid_afflvl0, stateid_afflvl2;
uint32_t cpu = plat_my_core_pos();
const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
mce_cstate_info_t cstate_info = { 0 };
uint64_t mc_ctx_base;
uint32_t val;
/* get the state ID */
pwr_domain_state = target_state->pwr_domain_state;
stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] &
TEGRA186_STATE_ID_MASK;
stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
TEGRA186_STATE_ID_MASK;
if ((stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ||
(stateid_afflvl0 == PSTATE_ID_CORE_POWERDN)) {
/* Enter CPU idle/powerdown */
val = (stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ?
(uint32_t)TEGRA_ARI_CORE_C6 : (uint32_t)TEGRA_ARI_CORE_C7;
(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)val,
tegra_percpu_data[cpu].wake_time, 0U);
} else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
/* save SE registers */
se_regs[0] = mmio_read_32(TEGRA_SE0_BASE +
SE_MUTEX_WATCHDOG_NS_LIMIT);
se_regs[1] = mmio_read_32(TEGRA_RNG1_BASE +
RNG_MUTEX_WATCHDOG_NS_LIMIT);
se_regs[2] = mmio_read_32(TEGRA_PKA1_BASE +
PKA_MUTEX_WATCHDOG_NS_LIMIT);
/* save 'Secure Boot' Processor Feature Config Register */
val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG);
mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_SECURE_BOOTP_FCFG, val);
/* save MC context to TZDRAM */
mc_ctx_base = params_from_bl2->tzdram_base;
tegra_mc_save_context((uintptr_t)mc_ctx_base);
/* Prepare for system suspend */
cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
cstate_info.system = (uint32_t)TEGRA_ARI_SYSTEM_SC7;
cstate_info.system_state_force = 1;
cstate_info.update_wake_mask = 1;
mce_update_cstate_info(&cstate_info);
/* Loop until system suspend is allowed */
do {
val = (uint32_t)mce_command_handler(
(uint64_t)MCE_CMD_IS_SC7_ALLOWED,
(uint64_t)TEGRA_ARI_CORE_C7,
MCE_CORE_SLEEP_TIME_INFINITE,
0U);
} while (val == 0U);
/* Instruct the MCE to enter system suspend state */
(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
(uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
} else {
; /* do nothing */
}
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* Helper function to check if this is the last ON CPU in the cluster
******************************************************************************/
static bool tegra_last_cpu_in_cluster(const plat_local_state_t *states,
uint32_t ncpu)
{
plat_local_state_t target;
bool last_on_cpu = true;
uint32_t num_cpus = ncpu, pos = 0;
do {
target = states[pos];
if (target != PLAT_MAX_OFF_STATE) {
last_on_cpu = false;
}
--num_cpus;
pos++;
} while (num_cpus != 0U);
return last_on_cpu;
}
/*******************************************************************************
* Helper function to get target power state for the cluster
******************************************************************************/
static plat_local_state_t tegra_get_afflvl1_pwr_state(const plat_local_state_t *states,
uint32_t ncpu)
{
uint32_t core_pos = (uint32_t)read_mpidr() & (uint32_t)MPIDR_CPU_MASK;
uint32_t cpu = plat_my_core_pos();
int32_t ret;
plat_local_state_t target = states[core_pos];
mce_cstate_info_t cstate_info = { 0 };
/* CPU suspend */
if (target == PSTATE_ID_CORE_POWERDN) {
/* Program default wake mask */
cstate_info.wake_mask = TEGRA186_CORE_WAKE_MASK;
cstate_info.update_wake_mask = 1;
mce_update_cstate_info(&cstate_info);
/* Check if CCx state is allowed. */
ret = mce_command_handler((uint64_t)MCE_CMD_IS_CCX_ALLOWED,
(uint64_t)TEGRA_ARI_CORE_C7,
tegra_percpu_data[cpu].wake_time,
0U);
if (ret == 0) {
target = PSCI_LOCAL_STATE_RUN;
}
}
/* CPU off */
if (target == PLAT_MAX_OFF_STATE) {
/* Enable cluster powerdn from last CPU in the cluster */
if (tegra_last_cpu_in_cluster(states, ncpu)) {
/* Enable CC7 state and turn off wake mask */
cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
cstate_info.update_wake_mask = 1;
mce_update_cstate_info(&cstate_info);
/* Check if CCx state is allowed. */
ret = mce_command_handler((uint64_t)MCE_CMD_IS_CCX_ALLOWED,
(uint64_t)TEGRA_ARI_CORE_C7,
MCE_CORE_SLEEP_TIME_INFINITE,
0U);
if (ret == 0) {
target = PSCI_LOCAL_STATE_RUN;
}
} else {
/* Turn off wake_mask */
cstate_info.update_wake_mask = 1;
mce_update_cstate_info(&cstate_info);
target = PSCI_LOCAL_STATE_RUN;
}
}
return target;
}
/*******************************************************************************
* Platform handler to calculate the proper target power level at the
* specified affinity level
******************************************************************************/
plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl,
const plat_local_state_t *states,
uint32_t ncpu)
{
plat_local_state_t target = PSCI_LOCAL_STATE_RUN;
uint32_t cpu = plat_my_core_pos();
/* System Suspend */
if ((lvl == (uint32_t)MPIDR_AFFLVL2) &&
(states[cpu] == PSTATE_ID_SOC_POWERDN)) {
target = PSTATE_ID_SOC_POWERDN;
}
/* CPU off, CPU suspend */
if (lvl == (uint32_t)MPIDR_AFFLVL1) {
target = tegra_get_afflvl1_pwr_state(states, ncpu);
}
/* target cluster/system state */
return target;
}
int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state)
{
const plat_local_state_t *pwr_domain_state =
target_state->pwr_domain_state;
const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
TEGRA186_STATE_ID_MASK;
uint64_t val;
uint64_t src_len_in_bytes = (uint64_t)(((uintptr_t)(&__BL31_END__) -
(uintptr_t)BL31_BASE));
int32_t ret;
if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
val = params_from_bl2->tzdram_base +
tegra186_get_mc_ctx_size();
/* Initialise communication channel with BPMP */
assert(tegra_bpmp_ipc_init() == 0);
/* Enable SE clock */
ret = tegra_bpmp_ipc_enable_clock(TEGRA186_CLK_SE);
if (ret != 0) {
ERROR("Failed to enable clock\n");
return ret;
}
/*
* Generate/save SHA256 of ATF during SC7 entry
*/
if (tegra_se_save_sha256_hash(BL31_BASE,
(uint32_t)src_len_in_bytes) != 0) {
ERROR("Hash calculation failed. Reboot\n");
(void)tegra_soc_prepare_system_reset();
}
/*
* The TZRAM loses power when we enter system suspend. To
* allow graceful exit from system suspend, we need to copy
* BL3-1 over to TZDRAM.
*/
val = params_from_bl2->tzdram_base +
tegra186_get_mc_ctx_size();
memcpy16((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE,
(uintptr_t)BL31_END - (uintptr_t)BL31_BASE);
/*
* Save code base and size; this would be used by SC7-RF to
* verify binary
*/
mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV68_LO,
(uint32_t)val);
mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV0_HI,
(uint32_t)src_len_in_bytes);
ret = tegra_bpmp_ipc_disable_clock(TEGRA186_CLK_SE);
if (ret != 0) {
ERROR("Failed to disable clock\n");
return ret;
}
}
return PSCI_E_SUCCESS;
}
int32_t tegra_soc_pwr_domain_suspend_pwrdown_early(const psci_power_state_t *target_state)
{
return PSCI_E_NOT_SUPPORTED;
}
int32_t tegra_soc_pwr_domain_on(u_register_t mpidr)
{
int32_t ret = PSCI_E_SUCCESS;
uint64_t target_cpu = mpidr & MPIDR_CPU_MASK;
uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >>
MPIDR_AFFINITY_BITS;
if (target_cluster > ((uint32_t)PLATFORM_CLUSTER_COUNT - 1U)) {
ERROR("%s: unsupported CPU (0x%lx)\n", __func__, mpidr);
ret = PSCI_E_NOT_PRESENT;
} else {
/* construct the target CPU # */
target_cpu |= (target_cluster << 2);
(void)mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U);
}
return ret;
}
int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
{
uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL];
uint8_t stateid_afflvl0 = target_state->pwr_domain_state[MPIDR_AFFLVL0];
mce_cstate_info_t cstate_info = { 0 };
uint64_t impl, val;
const plat_params_from_bl2_t *plat_params = bl31_get_plat_params();
impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
/*
* Enable ECC and Parity Protection for Cortex-A57 CPUs (Tegra186
* A02p and beyond).
*/
if ((plat_params->l2_ecc_parity_prot_dis != 1) && (impl != DENVER_IMPL)) {
val = read_l2ctlr_el1();
val |= CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT;
write_l2ctlr_el1(val);
}
/*
* Reset power state info for CPUs when onlining, we set
* deepest power when offlining a core but that may not be
* requested by non-secure sw which controls idle states. It
* will re-init this info from non-secure software when the
* core come online.
*/
if (stateid_afflvl0 == PLAT_MAX_OFF_STATE) {
cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC1;
cstate_info.update_wake_mask = 1;
mce_update_cstate_info(&cstate_info);
}
/*
* Check if we are exiting from deep sleep and restore SE
* context if we are.
*/
if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
mmio_write_32(TEGRA_SE0_BASE + SE_MUTEX_WATCHDOG_NS_LIMIT,
se_regs[0]);
mmio_write_32(TEGRA_RNG1_BASE + RNG_MUTEX_WATCHDOG_NS_LIMIT,
se_regs[1]);
mmio_write_32(TEGRA_PKA1_BASE + PKA_MUTEX_WATCHDOG_NS_LIMIT,
se_regs[2]);
/* Init SMMU */
tegra_smmu_init();
/*
* Reset power state info for the last core doing SC7
* entry and exit, we set deepest power state as CC7
* and SC7 for SC7 entry which may not be requested by
* non-secure SW which controls idle states.
*/
cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
cstate_info.system = (uint32_t)TEGRA_ARI_SYSTEM_SC1;
cstate_info.update_wake_mask = 1;
mce_update_cstate_info(&cstate_info);
}
return PSCI_E_SUCCESS;
}
int32_t tegra_soc_pwr_domain_off_early(const psci_power_state_t *target_state)
{
/* Do not power off the boot CPU */
if (plat_is_my_cpu_primary()) {
return PSCI_E_DENIED;
}
return PSCI_E_SUCCESS;
}
int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
{
uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;
(void)target_state;
/* Disable Denver's DCO operations */
if (impl == DENVER_IMPL) {
denver_disable_dco();
}
/* Turn off CPU */
(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
(uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
return PSCI_E_SUCCESS;
}
__dead2 void tegra_soc_prepare_system_off(void)
{
/* power off the entire system */
mce_enter_ccplex_state((uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF);
wfi();
/* wait for the system to power down */
for (;;) {
;
}
}
int32_t tegra_soc_prepare_system_reset(void)
{
mce_enter_ccplex_state((uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT);
return PSCI_E_SUCCESS;
}