aboutsummaryrefslogtreecommitdiff
path: root/drivers/st/ddr/stm32mp1_ddr.c
blob: eed1d7613d4a4d6e43239f9c2b76c2033d570214 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
/*
 * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
 *
 * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
 */

#include <arch.h>
#include <arch_helpers.h>
#include <debug.h>
#include <delay_timer.h>
#include <dt-bindings/clock/stm32mp1-clks.h>
#include <mmio.h>
#include <platform.h>
#include <stddef.h>
#include <stm32mp1_clk.h>
#include <stm32mp1_ddr.h>
#include <stm32mp1_ddr_regs.h>
#include <stm32mp1_dt.h>
#include <stm32mp1_pmic.h>
#include <stm32mp1_pwr.h>
#include <stm32mp1_ram.h>
#include <stm32mp1_rcc.h>

struct reg_desc {
	const char *name;
	uint16_t offset;	/* Offset for base address */
	uint8_t par_offset;	/* Offset for parameter array */
};

#define INVALID_OFFSET	0xFFU

#define TIMESLOT_1US	(plat_get_syscnt_freq2() / 1000000U)

#define DDRCTL_REG(x, y)					\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
		.par_offset = offsetof(struct y, x)		\
	}

#define DDRPHY_REG(x, y)					\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
		.par_offset = offsetof(struct y, x)		\
	}

#define DDRCTL_REG_REG(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_reg)
static const struct reg_desc ddr_reg[] = {
	DDRCTL_REG_REG(mstr),
	DDRCTL_REG_REG(mrctrl0),
	DDRCTL_REG_REG(mrctrl1),
	DDRCTL_REG_REG(derateen),
	DDRCTL_REG_REG(derateint),
	DDRCTL_REG_REG(pwrctl),
	DDRCTL_REG_REG(pwrtmg),
	DDRCTL_REG_REG(hwlpctl),
	DDRCTL_REG_REG(rfshctl0),
	DDRCTL_REG_REG(rfshctl3),
	DDRCTL_REG_REG(crcparctl0),
	DDRCTL_REG_REG(zqctl0),
	DDRCTL_REG_REG(dfitmg0),
	DDRCTL_REG_REG(dfitmg1),
	DDRCTL_REG_REG(dfilpcfg0),
	DDRCTL_REG_REG(dfiupd0),
	DDRCTL_REG_REG(dfiupd1),
	DDRCTL_REG_REG(dfiupd2),
	DDRCTL_REG_REG(dfiphymstr),
	DDRCTL_REG_REG(odtmap),
	DDRCTL_REG_REG(dbg0),
	DDRCTL_REG_REG(dbg1),
	DDRCTL_REG_REG(dbgcmd),
	DDRCTL_REG_REG(poisoncfg),
	DDRCTL_REG_REG(pccfg),
};

#define DDRCTL_REG_TIMING(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_timing)
static const struct reg_desc ddr_timing[] = {
	DDRCTL_REG_TIMING(rfshtmg),
	DDRCTL_REG_TIMING(dramtmg0),
	DDRCTL_REG_TIMING(dramtmg1),
	DDRCTL_REG_TIMING(dramtmg2),
	DDRCTL_REG_TIMING(dramtmg3),
	DDRCTL_REG_TIMING(dramtmg4),
	DDRCTL_REG_TIMING(dramtmg5),
	DDRCTL_REG_TIMING(dramtmg6),
	DDRCTL_REG_TIMING(dramtmg7),
	DDRCTL_REG_TIMING(dramtmg8),
	DDRCTL_REG_TIMING(dramtmg14),
	DDRCTL_REG_TIMING(odtcfg),
};

#define DDRCTL_REG_MAP(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_map)
static const struct reg_desc ddr_map[] = {
	DDRCTL_REG_MAP(addrmap1),
	DDRCTL_REG_MAP(addrmap2),
	DDRCTL_REG_MAP(addrmap3),
	DDRCTL_REG_MAP(addrmap4),
	DDRCTL_REG_MAP(addrmap5),
	DDRCTL_REG_MAP(addrmap6),
	DDRCTL_REG_MAP(addrmap9),
	DDRCTL_REG_MAP(addrmap10),
	DDRCTL_REG_MAP(addrmap11),
};

#define DDRCTL_REG_PERF(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_perf)
static const struct reg_desc ddr_perf[] = {
	DDRCTL_REG_PERF(sched),
	DDRCTL_REG_PERF(sched1),
	DDRCTL_REG_PERF(perfhpr1),
	DDRCTL_REG_PERF(perflpr1),
	DDRCTL_REG_PERF(perfwr1),
	DDRCTL_REG_PERF(pcfgr_0),
	DDRCTL_REG_PERF(pcfgw_0),
	DDRCTL_REG_PERF(pcfgqos0_0),
	DDRCTL_REG_PERF(pcfgqos1_0),
	DDRCTL_REG_PERF(pcfgwqos0_0),
	DDRCTL_REG_PERF(pcfgwqos1_0),
	DDRCTL_REG_PERF(pcfgr_1),
	DDRCTL_REG_PERF(pcfgw_1),
	DDRCTL_REG_PERF(pcfgqos0_1),
	DDRCTL_REG_PERF(pcfgqos1_1),
	DDRCTL_REG_PERF(pcfgwqos0_1),
	DDRCTL_REG_PERF(pcfgwqos1_1),
};

#define DDRPHY_REG_REG(x)	DDRPHY_REG(x, stm32mp1_ddrphy_reg)
static const struct reg_desc ddrphy_reg[] = {
	DDRPHY_REG_REG(pgcr),
	DDRPHY_REG_REG(aciocr),
	DDRPHY_REG_REG(dxccr),
	DDRPHY_REG_REG(dsgcr),
	DDRPHY_REG_REG(dcr),
	DDRPHY_REG_REG(odtcr),
	DDRPHY_REG_REG(zq0cr1),
	DDRPHY_REG_REG(dx0gcr),
	DDRPHY_REG_REG(dx1gcr),
	DDRPHY_REG_REG(dx2gcr),
	DDRPHY_REG_REG(dx3gcr),
};

#define DDRPHY_REG_TIMING(x)	DDRPHY_REG(x, stm32mp1_ddrphy_timing)
static const struct reg_desc ddrphy_timing[] = {
	DDRPHY_REG_TIMING(ptr0),
	DDRPHY_REG_TIMING(ptr1),
	DDRPHY_REG_TIMING(ptr2),
	DDRPHY_REG_TIMING(dtpr0),
	DDRPHY_REG_TIMING(dtpr1),
	DDRPHY_REG_TIMING(dtpr2),
	DDRPHY_REG_TIMING(mr0),
	DDRPHY_REG_TIMING(mr1),
	DDRPHY_REG_TIMING(mr2),
	DDRPHY_REG_TIMING(mr3),
};

#define DDRPHY_REG_CAL(x)	DDRPHY_REG(x, stm32mp1_ddrphy_cal)
static const struct reg_desc ddrphy_cal[] = {
	DDRPHY_REG_CAL(dx0dllcr),
	DDRPHY_REG_CAL(dx0dqtr),
	DDRPHY_REG_CAL(dx0dqstr),
	DDRPHY_REG_CAL(dx1dllcr),
	DDRPHY_REG_CAL(dx1dqtr),
	DDRPHY_REG_CAL(dx1dqstr),
	DDRPHY_REG_CAL(dx2dllcr),
	DDRPHY_REG_CAL(dx2dqtr),
	DDRPHY_REG_CAL(dx2dqstr),
	DDRPHY_REG_CAL(dx3dllcr),
	DDRPHY_REG_CAL(dx3dqtr),
	DDRPHY_REG_CAL(dx3dqstr),
};

#define DDR_REG_DYN(x)						\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
		.par_offset = INVALID_OFFSET \
	}

static const struct reg_desc ddr_dyn[] = {
	DDR_REG_DYN(stat),
	DDR_REG_DYN(init0),
	DDR_REG_DYN(dfimisc),
	DDR_REG_DYN(dfistat),
	DDR_REG_DYN(swctl),
	DDR_REG_DYN(swstat),
	DDR_REG_DYN(pctrl_0),
	DDR_REG_DYN(pctrl_1),
};

#define DDRPHY_REG_DYN(x)					\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
		.par_offset = INVALID_OFFSET			\
	}

static const struct reg_desc ddrphy_dyn[] = {
	DDRPHY_REG_DYN(pir),
	DDRPHY_REG_DYN(pgsr),
};

enum reg_type {
	REG_REG,
	REG_TIMING,
	REG_PERF,
	REG_MAP,
	REGPHY_REG,
	REGPHY_TIMING,
	REGPHY_CAL,
/*
 * Dynamic registers => managed in driver or not changed,
 * can be dumped in interactive mode.
 */
	REG_DYN,
	REGPHY_DYN,
	REG_TYPE_NB
};

enum base_type {
	DDR_BASE,
	DDRPHY_BASE,
	NONE_BASE
};

struct ddr_reg_info {
	const char *name;
	const struct reg_desc *desc;
	uint8_t size;
	enum base_type base;
};

static const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = {
	[REG_REG] = {
		"static", ddr_reg, ARRAY_SIZE(ddr_reg), DDR_BASE
	},
	[REG_TIMING] = {
		"timing", ddr_timing, ARRAY_SIZE(ddr_timing), DDR_BASE
	},
	[REG_PERF] = {
		"perf", ddr_perf, ARRAY_SIZE(ddr_perf), DDR_BASE
	},
	[REG_MAP] = {
		"map", ddr_map, ARRAY_SIZE(ddr_map), DDR_BASE
	},
	[REGPHY_REG] = {
		"static", ddrphy_reg, ARRAY_SIZE(ddrphy_reg), DDRPHY_BASE
	},
	[REGPHY_TIMING] = {
		"timing", ddrphy_timing, ARRAY_SIZE(ddrphy_timing), DDRPHY_BASE
	},
	[REGPHY_CAL] = {
		"cal", ddrphy_cal, ARRAY_SIZE(ddrphy_cal), DDRPHY_BASE
	},
	[REG_DYN] = {
		"dyn", ddr_dyn, ARRAY_SIZE(ddr_dyn), DDR_BASE
	},
	[REGPHY_DYN] = {
		"dyn", ddrphy_dyn, ARRAY_SIZE(ddrphy_dyn), DDRPHY_BASE
	},
};

static uint32_t get_base_addr(const struct ddr_info *priv, enum base_type base)
{
	if (base == DDRPHY_BASE) {
		return (uint32_t)priv->phy;
	} else {
		return (uint32_t)priv->ctl;
	}
}

static void set_reg(const struct ddr_info *priv,
		    enum reg_type type,
		    const void *param)
{
	unsigned int i;
	unsigned int *ptr, value;
	enum base_type base = ddr_registers[type].base;
	uint32_t base_addr = get_base_addr(priv, base);
	const struct reg_desc *desc = ddr_registers[type].desc;

	VERBOSE("init %s\n", ddr_registers[type].name);
	for (i = 0; i < ddr_registers[type].size; i++) {
		ptr = (unsigned int *)(base_addr + desc[i].offset);
		if (desc[i].par_offset == INVALID_OFFSET) {
			ERROR("invalid parameter offset for %s", desc[i].name);
			panic();
		} else {
			value = *((uint32_t *)((uint32_t)param +
					       desc[i].par_offset));
			mmio_write_32((uint32_t)ptr, value);
		}
	}
}

static void stm32mp1_ddrphy_idone_wait(struct stm32mp1_ddrphy *phy)
{
	uint32_t pgsr;
	int error = 0;
	unsigned long start;
	unsigned long time0, time;

	start = get_timer(0);
	time0 = start;

	do {
		pgsr = mmio_read_32((uint32_t)&phy->pgsr);
		time = get_timer(start);
		if (time != time0) {
			VERBOSE("  > [0x%x] pgsr = 0x%x &\n",
				(uint32_t)&phy->pgsr, pgsr);
			VERBOSE("    [0x%x] pir = 0x%x (time=%x)\n",
				(uint32_t)&phy->pir,
				mmio_read_32((uint32_t)&phy->pir),
				(uint32_t)time);
		}

		time0 = time;
		if (time > plat_get_syscnt_freq2()) {
			panic();
		}
		if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) {
			VERBOSE("DQS Gate Trainig Error\n");
			error++;
		}
		if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) {
			VERBOSE("DQS Gate Trainig Intermittent Error\n");
			error++;
		}
		if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) {
			VERBOSE("DQS Drift Error\n");
			error++;
		}
		if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) {
			VERBOSE("Read Valid Training Error\n");
			error++;
		}
		if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) {
			VERBOSE("Read Valid Training Intermittent Error\n");
			error++;
		}
	} while ((pgsr & DDRPHYC_PGSR_IDONE) == 0U && error == 0);
	VERBOSE("\n[0x%x] pgsr = 0x%x\n",
		(uint32_t)&phy->pgsr, pgsr);
}

static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, uint32_t pir)
{
	uint32_t pir_init = pir | DDRPHYC_PIR_INIT;

	mmio_write_32((uint32_t)&phy->pir, pir_init);
	VERBOSE("[0x%x] pir = 0x%x -> 0x%x\n",
		(uint32_t)&phy->pir, pir_init,
		mmio_read_32((uint32_t)&phy->pir));

	/* Need to wait 10 configuration clock before start polling */
	udelay(10);

	/* Wait DRAM initialization and Gate Training Evaluation complete */
	stm32mp1_ddrphy_idone_wait(phy);
}

/* Start quasi dynamic register update */
static void stm32mp1_start_sw_done(struct stm32mp1_ddrctl *ctl)
{
	mmio_clrbits_32((uint32_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
	VERBOSE("[0x%x] swctl = 0x%x\n",
		(uint32_t)&ctl->swctl,  mmio_read_32((uint32_t)&ctl->swctl));
}

/* Wait quasi dynamic register update */
static void stm32mp1_wait_sw_done_ack(struct stm32mp1_ddrctl *ctl)
{
	unsigned long start;
	uint32_t swstat;

	mmio_setbits_32((uint32_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
	VERBOSE("[0x%x] swctl = 0x%x\n",
		(uint32_t)&ctl->swctl, mmio_read_32((uint32_t)&ctl->swctl));

	start = get_timer(0);
	do {
		swstat = mmio_read_32((uint32_t)&ctl->swstat);
		VERBOSE("[0x%x] swstat = 0x%x ",
			(uint32_t)&ctl->swstat, swstat);
		VERBOSE("timer in ms 0x%x = start 0x%lx\r",
			get_timer(0), start);
		if (get_timer(start) > plat_get_syscnt_freq2()) {
			panic();
		}
	} while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U);

	VERBOSE("[0x%x] swstat = 0x%x\n",
		(uint32_t)&ctl->swstat, swstat);
}

/* Wait quasi dynamic register update */
static void stm32mp1_wait_operating_mode(struct ddr_info *priv, uint32_t mode)
{
	unsigned long start;
	uint32_t stat;
	uint32_t operating_mode;
	uint32_t selref_type;
	int break_loop = 0;

	start = get_timer(0);
	for ( ; ; ) {
		stat = mmio_read_32((uint32_t)&priv->ctl->stat);
		operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK;
		selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK;
		VERBOSE("[0x%x] stat = 0x%x\n",
			(uint32_t)&priv->ctl->stat, stat);
		VERBOSE("timer in ms 0x%x = start 0x%lx\r",
			get_timer(0), start);
		if (get_timer(start) > plat_get_syscnt_freq2()) {
			panic();
		}

		if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) {
			/*
			 * Self-refresh due to software
			 * => checking also STAT.selfref_type.
			 */
			if ((operating_mode ==
			     DDRCTRL_STAT_OPERATING_MODE_SR) &&
			    (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) {
				break_loop = 1;
			}
		} else if (operating_mode == mode) {
			break_loop = 1;
		} else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) &&
			   (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) &&
			   (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) {
			/* Normal mode: handle also automatic self refresh */
			break_loop = 1;
		}

		if (break_loop == 1) {
			break;
		}
	}

	VERBOSE("[0x%x] stat = 0x%x\n",
		(uint32_t)&priv->ctl->stat, stat);
}

/* Mode Register Writes (MRW or MRS) */
static void stm32mp1_mode_register_write(struct ddr_info *priv, uint8_t addr,
					 uint32_t data)
{
	uint32_t mrctrl0;

	VERBOSE("MRS: %d = %x\n", addr, data);

	/*
	 * 1. Poll MRSTAT.mr_wr_busy until it is '0'.
	 *    This checks that there is no outstanding MR transaction.
	 *    No write should be performed to MRCTRL0 and MRCTRL1
	 *    if MRSTAT.mr_wr_busy = 1.
	 */
	while ((mmio_read_32((uint32_t)&priv->ctl->mrstat) &
		DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
		;
	}

	/*
	 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
	 *    and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
	 */
	mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE |
		  DDRCTRL_MRCTRL0_MR_RANK_ALL |
		  (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) &
		   DDRCTRL_MRCTRL0_MR_ADDR_MASK);
	mmio_write_32((uint32_t)&priv->ctl->mrctrl0, mrctrl0);
	VERBOSE("[0x%x] mrctrl0 = 0x%x (0x%x)\n",
		(uint32_t)&priv->ctl->mrctrl0,
		mmio_read_32((uint32_t)&priv->ctl->mrctrl0), mrctrl0);
	mmio_write_32((uint32_t)&priv->ctl->mrctrl1, data);
	VERBOSE("[0x%x] mrctrl1 = 0x%x\n",
		(uint32_t)&priv->ctl->mrctrl1,
		mmio_read_32((uint32_t)&priv->ctl->mrctrl1));

	/*
	 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This
	 *    bit is self-clearing, and triggers the MR transaction.
	 *    The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
	 *    the MR transaction to SDRAM, and no further access can be
	 *    initiated until it is deasserted.
	 */
	mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR;
	mmio_write_32((uint32_t)&priv->ctl->mrctrl0, mrctrl0);

	while ((mmio_read_32((uint32_t)&priv->ctl->mrstat) &
	       DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
		;
	}

	VERBOSE("[0x%x] mrctrl0 = 0x%x\n",
		(uint32_t)&priv->ctl->mrctrl0, mrctrl0);
}

/* Switch DDR3 from DLL-on to DLL-off */
static void stm32mp1_ddr3_dll_off(struct ddr_info *priv)
{
	uint32_t mr1 = mmio_read_32((uint32_t)&priv->phy->mr1);
	uint32_t mr2 = mmio_read_32((uint32_t)&priv->phy->mr2);
	uint32_t dbgcam;

	VERBOSE("mr1: 0x%x\n", mr1);
	VERBOSE("mr2: 0x%x\n", mr2);

	/*
	 * 1. Set the DBG1.dis_hif = 1.
	 *    This prevents further reads/writes being received on the HIF.
	 */
	mmio_setbits_32((uint32_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
	VERBOSE("[0x%x] dbg1 = 0x%x\n",
		(uint32_t)&priv->ctl->dbg1,
		mmio_read_32((uint32_t)&priv->ctl->dbg1));

	/*
	 * 2. Ensure all commands have been flushed from the uMCTL2 by polling
	 *    DBGCAM.wr_data_pipeline_empty = 1,
	 *    DBGCAM.rd_data_pipeline_empty = 1,
	 *    DBGCAM.dbg_wr_q_depth = 0 ,
	 *    DBGCAM.dbg_lpr_q_depth = 0, and
	 *    DBGCAM.dbg_hpr_q_depth = 0.
	 */
	do {
		dbgcam = mmio_read_32((uint32_t)&priv->ctl->dbgcam);
		VERBOSE("[0x%x] dbgcam = 0x%x\n",
			(uint32_t)&priv->ctl->dbgcam, dbgcam);
	} while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) ==
		   DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) &&
		 ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U));

	/*
	 * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
	 *    to disable RTT_NOM:
	 *    a. DDR3: Write to MR1[9], MR1[6] and MR1[2]
	 *    b. DDR4: Write to MR1[10:8]
	 */
	mr1 &= ~(BIT(9) | BIT(6) | BIT(2));
	stm32mp1_mode_register_write(priv, 1, mr1);

	/*
	 * 4. For DDR4 only: Perform an MRS command
	 *    (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6]
	 *    to disable RTT_PARK
	 */

	/*
	 * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
	 *    to write to MR2[10:9], to disable RTT_WR
	 *    (and therefore disable dynamic ODT).
	 *    This applies for both DDR3 and DDR4.
	 */
	mr2 &= ~GENMASK(10, 9);
	stm32mp1_mode_register_write(priv, 2, mr2);

	/*
	 * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
	 *    to disable the DLL. The timing of this MRS is automatically
	 *    handled by the uMCTL2.
	 *    a. DDR3: Write to MR1[0]
	 *    b. DDR4: Write to MR1[0]
	 */
	mr1 |= BIT(0);
	stm32mp1_mode_register_write(priv, 1, mr1);

	/*
	 * 7. Put the SDRAM into self-refresh mode by setting
	 *    PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure
	 *    the DDRC has entered self-refresh.
	 */
	mmio_setbits_32((uint32_t)&priv->ctl->pwrctl,
			DDRCTRL_PWRCTL_SELFREF_SW);
	VERBOSE("[0x%x] pwrctl = 0x%x\n",
		(uint32_t)&priv->ctl->pwrctl,
		mmio_read_32((uint32_t)&priv->ctl->pwrctl));

	/*
	 * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the
	 *    DWC_ddr_umctl2 core is in self-refresh mode.
	 *    Ensure transition to self-refresh was due to software
	 *    by checking that STAT.selfref_type[1:0]=2.
	 */
	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR);

	/*
	 * 9. Set the MSTR.dll_off_mode = 1.
	 *    warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field
	 */
	stm32mp1_start_sw_done(priv->ctl);

	mmio_setbits_32((uint32_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE);
	VERBOSE("[0x%x] mstr = 0x%x\n",
		(uint32_t)&priv->ctl->mstr,
		mmio_read_32((uint32_t)&priv->ctl->mstr));

	stm32mp1_wait_sw_done_ack(priv->ctl);

	/* 10. Change the clock frequency to the desired value. */

	/*
	 * 11. Update any registers which may be required to change for the new
	 *     frequency. This includes static and dynamic registers.
	 *     This includes both uMCTL2 registers and PHY registers.
	 */

	/* Change Bypass Mode Frequency Range */
	if (stm32mp1_clk_get_rate(DDRPHYC) < 100000000U) {
		mmio_clrbits_32((uint32_t)&priv->phy->dllgcr,
				DDRPHYC_DLLGCR_BPS200);
	} else {
		mmio_setbits_32((uint32_t)&priv->phy->dllgcr,
				DDRPHYC_DLLGCR_BPS200);
	}

	mmio_setbits_32((uint32_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS);

	mmio_setbits_32((uint32_t)&priv->phy->dx0dllcr,
			DDRPHYC_DXNDLLCR_DLLDIS);
	mmio_setbits_32((uint32_t)&priv->phy->dx1dllcr,
			DDRPHYC_DXNDLLCR_DLLDIS);
	mmio_setbits_32((uint32_t)&priv->phy->dx2dllcr,
			DDRPHYC_DXNDLLCR_DLLDIS);
	mmio_setbits_32((uint32_t)&priv->phy->dx3dllcr,
			DDRPHYC_DXNDLLCR_DLLDIS);

	/* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
	mmio_clrbits_32((uint32_t)&priv->ctl->pwrctl,
			DDRCTRL_PWRCTL_SELFREF_SW);
	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);

	/*
	 * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command
	 *     at this point.
	 */

	/*
	 * 14. Perform MRS commands as required to re-program timing registers
	 *     in the SDRAM for the new frequency
	 *     (in particular, CL, CWL and WR may need to be changed).
	 */

	/* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */
	mmio_clrbits_32((uint32_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
	VERBOSE("[0x%x] dbg1 = 0x%x\n",
		(uint32_t)&priv->ctl->dbg1,
		mmio_read_32((uint32_t)&priv->ctl->dbg1));
}

static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl)
{
	stm32mp1_start_sw_done(ctl);
	/* Quasi-dynamic register update*/
	mmio_setbits_32((uint32_t)&ctl->rfshctl3,
			DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
	mmio_clrbits_32((uint32_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
	mmio_clrbits_32((uint32_t)&ctl->dfimisc,
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
	stm32mp1_wait_sw_done_ack(ctl);
}

static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl,
				     uint32_t rfshctl3, uint32_t pwrctl)
{
	stm32mp1_start_sw_done(ctl);
	if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) {
		mmio_clrbits_32((uint32_t)&ctl->rfshctl3,
				DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
	}
	if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) {
		mmio_setbits_32((uint32_t)&ctl->pwrctl,
				DDRCTRL_PWRCTL_POWERDOWN_EN);
	}
	mmio_setbits_32((uint32_t)&ctl->dfimisc,
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
	stm32mp1_wait_sw_done_ack(ctl);
}

static int board_ddr_power_init(enum ddr_type ddr_type)
{
	if (dt_check_pmic()) {
		return pmic_ddr_power_init(ddr_type);
	}

	return 0;
}

void stm32mp1_ddr_init(struct ddr_info *priv,
		       struct stm32mp1_ddr_config *config)
{
	uint32_t pir;
	int ret;

	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
		ret = board_ddr_power_init(STM32MP_DDR3);
	} else {
		ret = board_ddr_power_init(STM32MP_LPDDR2);
	}

	if (ret != 0) {
		panic();
	}

	VERBOSE("name = %s\n", config->info.name);
	VERBOSE("speed = %d MHz\n", config->info.speed);
	VERBOSE("size  = 0x%x\n", config->info.size);

	/* DDR INIT SEQUENCE */

	/*
	 * 1. Program the DWC_ddr_umctl2 registers
	 *     nota: check DFIMISC.dfi_init_complete = 0
	 */

	/* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);

	/* 1.2. start CLOCK */
	if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) {
		panic();
	}

	/* 1.3. deassert reset */
	/* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
	/*
	 * De-assert presetn once the clocks are active
	 * and stable via DDRCAPBRST bit.
	 */
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);

	/* 1.4. wait 128 cycles to permit initialization of end logic */
	udelay(2);
	/* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */

	/* 1.5. initialize registers ddr_umctl2 */
	/* Stop uMCTL2 before PHY is ready */
	mmio_clrbits_32((uint32_t)&priv->ctl->dfimisc,
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
	VERBOSE("[0x%x] dfimisc = 0x%x\n",
		(uint32_t)&priv->ctl->dfimisc,
		mmio_read_32((uint32_t)&priv->ctl->dfimisc));

	set_reg(priv, REG_REG, &config->c_reg);

	/* DDR3 = don't set DLLOFF for init mode */
	if ((config->c_reg.mstr &
	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
		VERBOSE("deactivate DLL OFF in mstr\n");
		mmio_clrbits_32((uint32_t)&priv->ctl->mstr,
				DDRCTRL_MSTR_DLL_OFF_MODE);
		VERBOSE("[0x%x] mstr = 0x%x\n",
			(uint32_t)&priv->ctl->mstr,
			mmio_read_32((uint32_t)&priv->ctl->mstr));
	}

	set_reg(priv, REG_TIMING, &config->c_timing);
	set_reg(priv, REG_MAP, &config->c_map);

	/* Skip CTRL init, SDRAM init is done by PHY PUBL */
	mmio_clrsetbits_32((uint32_t)&priv->ctl->init0,
			   DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK,
			   DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL);
	VERBOSE("[0x%x] init0 = 0x%x\n",
		(uint32_t)&priv->ctl->init0,
		mmio_read_32((uint32_t)&priv->ctl->init0));

	set_reg(priv, REG_PERF, &config->c_perf);

	/*  2. deassert reset signal core_ddrc_rstn, aresetn and presetn */
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);

	/*
	 * 3. start PHY init by accessing relevant PUBL registers
	 *    (DXGCR, DCR, PTR*, MR*, DTPR*)
	 */
	set_reg(priv, REGPHY_REG, &config->p_reg);
	set_reg(priv, REGPHY_TIMING, &config->p_timing);
	set_reg(priv, REGPHY_CAL, &config->p_cal);

	/* DDR3 = don't set DLLOFF for init mode */
	if ((config->c_reg.mstr &
	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
		VERBOSE("deactivate DLL OFF in mr1\n");
		mmio_clrbits_32((uint32_t)&priv->phy->mr1, BIT(0));
		VERBOSE("[0x%x] mr1 = 0x%x\n",
			(uint32_t)&priv->phy->mr1,
			mmio_read_32((uint32_t)&priv->phy->mr1));
	}

	/*
	 *  4. Monitor PHY init status by polling PUBL register PGSR.IDONE
	 *     Perform DDR PHY DRAM initialization and Gate Training Evaluation
	 */
	stm32mp1_ddrphy_idone_wait(priv->phy);

	/*
	 *  5. Indicate to PUBL that controller performs SDRAM initialization
	 *     by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE
	 *     DRAM init is done by PHY, init0.skip_dram.init = 1
	 */

	pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL |
	      DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC;

	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
		pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */
	}

	stm32mp1_ddrphy_init(priv->phy, pir);

	/*
	 *  6. SET DFIMISC.dfi_init_complete_en to 1
	 *  Enable quasi-dynamic register programming.
	 */
	stm32mp1_start_sw_done(priv->ctl);

	mmio_setbits_32((uint32_t)&priv->ctl->dfimisc,
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
	VERBOSE("[0x%x] dfimisc = 0x%x\n",
		(uint32_t)&priv->ctl->dfimisc,
		mmio_read_32((uint32_t)&priv->ctl->dfimisc));

	stm32mp1_wait_sw_done_ack(priv->ctl);

	/*
	 *  7. Wait for DWC_ddr_umctl2 to move to normal operation mode
	 *     by monitoring STAT.operating_mode signal
	 */

	/* Wait uMCTL2 ready */
	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);

	/* Switch to DLL OFF mode */
	if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) {
		stm32mp1_ddr3_dll_off(priv);
	}

	VERBOSE("DDR DQS training : ");

	/*
	 *  8. Disable Auto refresh and power down by setting
	 *    - RFSHCTL3.dis_au_refresh = 1
	 *    - PWRCTL.powerdown_en = 0
	 *    - DFIMISC.dfiinit_complete_en = 0
	 */
	stm32mp1_refresh_disable(priv->ctl);

	/*
	 *  9. Program PUBL PGCR to enable refresh during training
	 *     and rank to train
	 *     not done => keep the programed value in PGCR
	 */

	/*
	 * 10. configure PUBL PIR register to specify which training step
	 * to run
	 * Warning : RVTRN  is not supported by this PUBL
	 */
	stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN);

	/* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */
	stm32mp1_ddrphy_idone_wait(priv->phy);

	/*
	 * 12. set back registers in step 8 to the orginal values if desidered
	 */
	stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3,
				 config->c_reg.pwrctl);

	/* Enable uMCTL2 AXI port 0 */
	mmio_setbits_32((uint32_t)&priv->ctl->pctrl_0, DDRCTRL_PCTRL_N_PORT_EN);
	VERBOSE("[0x%x] pctrl_0 = 0x%x\n",
		(uint32_t)&priv->ctl->pctrl_0,
		mmio_read_32((uint32_t)&priv->ctl->pctrl_0));

	/* Enable uMCTL2 AXI port 1 */
	mmio_setbits_32((uint32_t)&priv->ctl->pctrl_1, DDRCTRL_PCTRL_N_PORT_EN);
	VERBOSE("[0x%x] pctrl_1 = 0x%x\n",
		(uint32_t)&priv->ctl->pctrl_1,
		mmio_read_32((uint32_t)&priv->ctl->pctrl_1));
}