aboutsummaryrefslogtreecommitdiff
path: root/drivers/arm/gic/v3/gicv3_main.c
blob: 566c446d659cf2f14fd1dc97c7cab5d360dd318c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/*
 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <gic_common.h>
#include <gicv3.h>
#include "../common/gic_common_private.h"
#include "gicv3_private.h"

static const gicv3_driver_data_t *driver_data;
static unsigned int gicv2_compat;

/*
 * Redistributor power operations are weakly bound so that they can be
 * overridden
 */
#pragma weak gicv3_rdistif_off
#pragma weak gicv3_rdistif_on

/*******************************************************************************
 * This function initialises the ARM GICv3 driver in EL3 with provided platform
 * inputs.
 ******************************************************************************/
void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
{
	unsigned int gic_version;

	assert(plat_driver_data);
	assert(plat_driver_data->gicd_base);
	assert(plat_driver_data->gicr_base);
	assert(plat_driver_data->rdistif_num);
	assert(plat_driver_data->rdistif_base_addrs);

	assert(IS_IN_EL3());

	/*
	 * The platform should provide a list of at least one type of
	 * interrupts
	 */
	assert(plat_driver_data->g0_interrupt_array ||
	       plat_driver_data->g1s_interrupt_array);

	/*
	 * If there are no interrupts of a particular type, then the number of
	 * interrupts of that type should be 0 and vice-versa.
	 */
	assert(plat_driver_data->g0_interrupt_array ?
	       plat_driver_data->g0_interrupt_num :
	       plat_driver_data->g0_interrupt_num == 0);
	assert(plat_driver_data->g1s_interrupt_array ?
	       plat_driver_data->g1s_interrupt_num :
	       plat_driver_data->g1s_interrupt_num == 0);

	/* Check for system register support */
#ifdef AARCH32
	assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
#else
	assert(read_id_aa64pfr0_el1() &
			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
#endif /* AARCH32 */

	/* The GIC version should be 3.0 */
	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
	gic_version >>=	PIDR2_ARCH_REV_SHIFT;
	gic_version &= PIDR2_ARCH_REV_MASK;
	assert(gic_version == ARCH_REV_GICV3);

	/*
	 * Find out whether the GIC supports the GICv2 compatibility mode. The
	 * ARE_S bit resets to 0 if supported
	 */
	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
	gicv2_compat >>= CTLR_ARE_S_SHIFT;
	gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);

	/*
	 * Find the base address of each implemented Redistributor interface.
	 * The number of interfaces should be equal to the number of CPUs in the
	 * system. The memory for saving these addresses has to be allocated by
	 * the platform port
	 */
	gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
					   plat_driver_data->rdistif_num,
					   plat_driver_data->gicr_base,
					   plat_driver_data->mpidr_to_core_pos);

	driver_data = plat_driver_data;

	/*
	 * The GIC driver data is initialized by the primary CPU with caches
	 * enabled. When the secondary CPU boots up, it initializes the
	 * GICC/GICR interface with the caches disabled. Hence flush the
	 * driver_data to ensure coherency. This is not required if the
	 * platform has HW_ASSISTED_COHERENCY enabled.
	 */
#if !HW_ASSISTED_COHERENCY
	flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
	flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
#endif

	INFO("GICv3 %s legacy support detected."
			" ARM GICV3 driver initialized in EL3\n",
			gicv2_compat ? "with" : "without");
}

/*******************************************************************************
 * This function initialises the GIC distributor interface based upon the data
 * provided by the platform while initialising the driver.
 ******************************************************************************/
void gicv3_distif_init(void)
{
	unsigned int bitmap = 0;

	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(driver_data->g1s_interrupt_array ||
	       driver_data->g0_interrupt_array);

	assert(IS_IN_EL3());

	/*
	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
	 * the ARE_S bit. The Distributor might generate a system error
	 * otherwise.
	 */
	gicd_clr_ctlr(driver_data->gicd_base,
		      CTLR_ENABLE_G0_BIT |
		      CTLR_ENABLE_G1S_BIT |
		      CTLR_ENABLE_G1NS_BIT,
		      RWP_TRUE);

	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
	gicd_set_ctlr(driver_data->gicd_base,
			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);

	/* Set the default attribute of all SPIs */
	gicv3_spis_configure_defaults(driver_data->gicd_base);

	/* Configure the G1S SPIs */
	if (driver_data->g1s_interrupt_array) {
		gicv3_secure_spis_configure(driver_data->gicd_base,
					driver_data->g1s_interrupt_num,
					driver_data->g1s_interrupt_array,
					INTR_GROUP1S);
		bitmap |= CTLR_ENABLE_G1S_BIT;
	}

	/* Configure the G0 SPIs */
	if (driver_data->g0_interrupt_array) {
		gicv3_secure_spis_configure(driver_data->gicd_base,
					driver_data->g0_interrupt_num,
					driver_data->g0_interrupt_array,
					INTR_GROUP0);
		bitmap |= CTLR_ENABLE_G0_BIT;
	}

	/* Enable the secure SPIs now that they have been configured */
	gicd_set_ctlr(driver_data->gicd_base, bitmap, RWP_TRUE);
}

/*******************************************************************************
 * This function initialises the GIC Redistributor interface of the calling CPU
 * (identified by the 'proc_num' parameter) based upon the data provided by the
 * platform while initialising the driver.
 ******************************************************************************/
void gicv3_rdistif_init(unsigned int proc_num)
{
	uintptr_t gicr_base;

	assert(driver_data);
	assert(proc_num < driver_data->rdistif_num);
	assert(driver_data->rdistif_base_addrs);
	assert(driver_data->gicd_base);
	assert(gicd_read_ctlr(driver_data->gicd_base) & CTLR_ARE_S_BIT);
	assert(driver_data->g1s_interrupt_array ||
	       driver_data->g0_interrupt_array);

	assert(IS_IN_EL3());

	/* Power on redistributor */
	gicv3_rdistif_on(proc_num);

	gicr_base = driver_data->rdistif_base_addrs[proc_num];

	/* Set the default attribute of all SGIs and PPIs */
	gicv3_ppi_sgi_configure_defaults(gicr_base);

	/* Configure the G1S SGIs/PPIs */
	if (driver_data->g1s_interrupt_array) {
		gicv3_secure_ppi_sgi_configure(gicr_base,
					driver_data->g1s_interrupt_num,
					driver_data->g1s_interrupt_array,
					INTR_GROUP1S);
	}

	/* Configure the G0 SGIs/PPIs */
	if (driver_data->g0_interrupt_array) {
		gicv3_secure_ppi_sgi_configure(gicr_base,
					driver_data->g0_interrupt_num,
					driver_data->g0_interrupt_array,
					INTR_GROUP0);
	}
}

/*******************************************************************************
 * Functions to perform power operations on GIC Redistributor
 ******************************************************************************/
void gicv3_rdistif_off(unsigned int proc_num)
{
	return;
}

void gicv3_rdistif_on(unsigned int proc_num)
{
	return;
}

/*******************************************************************************
 * This function enables the GIC CPU interface of the calling CPU using only
 * system register accesses.
 ******************************************************************************/
void gicv3_cpuif_enable(unsigned int proc_num)
{
	uintptr_t gicr_base;
	unsigned int scr_el3;
	unsigned int icc_sre_el3;

	assert(driver_data);
	assert(proc_num < driver_data->rdistif_num);
	assert(driver_data->rdistif_base_addrs);
	assert(IS_IN_EL3());

	/* Mark the connected core as awake */
	gicr_base = driver_data->rdistif_base_addrs[proc_num];
	gicv3_rdistif_mark_core_awake(gicr_base);

	/* Disable the legacy interrupt bypass */
	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;

	/*
	 * Enable system register access for EL3 and allow lower exception
	 * levels to configure the same for themselves. If the legacy mode is
	 * not supported, the SRE bit is RAO/WI
	 */
	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);

	scr_el3 = read_scr_el3();

	/*
	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
	 * ICC_SRE_EL2 registers.
	 */
	write_scr_el3(scr_el3 | SCR_NS_BIT);
	isb();

	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
	write_icc_sre_el1(ICC_SRE_SRE_BIT);
	isb();

	/* Switch to secure state. */
	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
	isb();

	/* Program the idle priority in the PMR */
	write_icc_pmr_el1(GIC_PRI_MASK);

	/* Enable Group0 interrupts */
	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);

	/* Enable Group1 Secure interrupts */
	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
				IGRPEN1_EL3_ENABLE_G1S_BIT);

	/* Write the secure ICC_SRE_EL1 register */
	write_icc_sre_el1(ICC_SRE_SRE_BIT);
	isb();
}

/*******************************************************************************
 * This function disables the GIC CPU interface of the calling CPU using
 * only system register accesses.
 ******************************************************************************/
void gicv3_cpuif_disable(unsigned int proc_num)
{
	uintptr_t gicr_base;

	assert(driver_data);
	assert(proc_num < driver_data->rdistif_num);
	assert(driver_data->rdistif_base_addrs);

	assert(IS_IN_EL3());

	/* Disable legacy interrupt bypass */
	write_icc_sre_el3(read_icc_sre_el3() |
			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));

	/* Disable Group0 interrupts */
	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
			      ~IGRPEN1_EL1_ENABLE_G0_BIT);

	/* Disable Group1 Secure and Non-Secure interrupts */
	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
			      IGRPEN1_EL3_ENABLE_G1S_BIT));

	/* Synchronise accesses to group enable registers */
	isb();

	/* Mark the connected core as asleep */
	gicr_base = driver_data->rdistif_base_addrs[proc_num];
	gicv3_rdistif_mark_core_asleep(gicr_base);
}

/*******************************************************************************
 * This function returns the id of the highest priority pending interrupt at
 * the GIC cpu interface.
 ******************************************************************************/
unsigned int gicv3_get_pending_interrupt_id(void)
{
	unsigned int id;

	assert(IS_IN_EL3());
	id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;

	/*
	 * If the ID is special identifier corresponding to G1S or G1NS
	 * interrupt, then read the highest pending group 1 interrupt.
	 */
	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
		return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;

	return id;
}

/*******************************************************************************
 * This function returns the type of the highest priority pending interrupt at
 * the GIC cpu interface. The return values can be one of the following :
 *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
 *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
 *   0 - 1019           : The interrupt type is secure Group 0.
 *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
 *                            sufficient priority to be signaled
 ******************************************************************************/
unsigned int gicv3_get_pending_interrupt_type(void)
{
	assert(IS_IN_EL3());
	return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
}

/*******************************************************************************
 * This function returns the type of the interrupt id depending upon the group
 * this interrupt has been configured under by the interrupt controller i.e.
 * group0 or group1 Secure / Non Secure. The return value can be one of the
 * following :
 *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
 *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
 *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
 *                   interrupt.
 ******************************************************************************/
unsigned int gicv3_get_interrupt_type(unsigned int id,
					  unsigned int proc_num)
{
	unsigned int igroup, grpmodr;
	uintptr_t gicr_base;

	assert(IS_IN_EL3());
	assert(driver_data);

	/* Ensure the parameters are valid */
	assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
	assert(proc_num < driver_data->rdistif_num);

	/* All LPI interrupts are Group 1 non secure */
	if (id >= MIN_LPI_ID)
		return INTR_GROUP1NS;

	if (id < MIN_SPI_ID) {
		assert(driver_data->rdistif_base_addrs);
		gicr_base = driver_data->rdistif_base_addrs[proc_num];
		igroup = gicr_get_igroupr0(gicr_base, id);
		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
	} else {
		assert(driver_data->gicd_base);
		igroup = gicd_get_igroupr(driver_data->gicd_base, id);
		grpmodr = gicd_get_igrpmodr(driver_data->gicd_base, id);
	}

	/*
	 * If the IGROUP bit is set, then it is a Group 1 Non secure
	 * interrupt
	 */
	if (igroup)
		return INTR_GROUP1NS;

	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
	if (grpmodr)
		return INTR_GROUP1S;

	/* Else it is a Group 0 Secure interrupt */
	return INTR_GROUP0;
}