aboutsummaryrefslogtreecommitdiff
path: root/lib/xlat_tables_v2/aarch32/xlat_tables_arch.c
blob: 7ae3f96f590bcf9cf490cd3c96074cbbb8e7787f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*
 * Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <assert.h>
#include <cassert.h>
#include <platform_def.h>
#include <stdbool.h>
#include <utils_def.h>
#include <xlat_tables_v2.h>
#include "../xlat_tables_private.h"

#if (ARM_ARCH_MAJOR == 7) && !defined(ARMV7_SUPPORTS_LARGE_PAGE_ADDRESSING)
#error ARMv7 target does not support LPAE MMU descriptors
#endif

/*
 * Returns true if the provided granule size is supported, false otherwise.
 */
bool xlat_arch_is_granule_size_supported(size_t size)
{
	/*
	 * The library uses the long descriptor translation table format, which
	 * supports 4 KiB pages only.
	 */
	return size == PAGE_SIZE_4KB;
}

size_t xlat_arch_get_max_supported_granule_size(void)
{
	return PAGE_SIZE_4KB;
}

#if ENABLE_ASSERTIONS
unsigned long long xlat_arch_get_max_supported_pa(void)
{
	/* Physical address space size for long descriptor format. */
	return (1ULL << 40) - 1ULL;
}

/*
 * Return minimum virtual address space size supported by the architecture
 */
uintptr_t xlat_get_min_virt_addr_space_size(void)
{
	return MIN_VIRT_ADDR_SPACE_SIZE;
}
#endif /* ENABLE_ASSERTIONS*/

bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
{
	if (ctx->xlat_regime == EL1_EL0_REGIME) {
		assert(xlat_arch_current_el() == 1U);
		return (read_sctlr() & SCTLR_M_BIT) != 0U;
	} else {
		assert(ctx->xlat_regime == EL2_REGIME);
		assert(xlat_arch_current_el() == 2U);
		return (read_hsctlr() & HSCTLR_M_BIT) != 0U;
	}
}

bool is_dcache_enabled(void)
{
	if (IS_IN_EL2()) {
		return (read_hsctlr() & HSCTLR_C_BIT) != 0U;
	} else {
		return (read_sctlr() & SCTLR_C_BIT) != 0U;
	}
}

uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime)
{
	if (xlat_regime == EL1_EL0_REGIME) {
		return UPPER_ATTRS(XN) | UPPER_ATTRS(PXN);
	} else {
		assert(xlat_regime == EL2_REGIME);
		return UPPER_ATTRS(XN);
	}
}

void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime)
{
	/*
	 * Ensure the translation table write has drained into memory before
	 * invalidating the TLB entry.
	 */
	dsbishst();

	if (xlat_regime == EL1_EL0_REGIME) {
		tlbimvaais(TLBI_ADDR(va));
	} else {
		assert(xlat_regime == EL2_REGIME);
		tlbimvahis(TLBI_ADDR(va));
	}
}

void xlat_arch_tlbi_va_sync(void)
{
	/* Invalidate all entries from branch predictors. */
	bpiallis();

	/*
	 * A TLB maintenance instruction can complete at any time after
	 * it is issued, but is only guaranteed to be complete after the
	 * execution of DSB by the PE that executed the TLB maintenance
	 * instruction. After the TLB invalidate instruction is
	 * complete, no new memory accesses using the invalidated TLB
	 * entries will be observed by any observer of the system
	 * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
	 * "Ordering and completion of TLB maintenance instructions".
	 */
	dsbish();

	/*
	 * The effects of a completed TLB maintenance instruction are
	 * only guaranteed to be visible on the PE that executed the
	 * instruction after the execution of an ISB instruction by the
	 * PE that executed the TLB maintenance instruction.
	 */
	isb();
}

unsigned int xlat_arch_current_el(void)
{
	if (IS_IN_HYP()) {
		return 2U;
	} else {
		assert(IS_IN_SVC() || IS_IN_MON());
		/*
		 * If EL3 is in AArch32 mode, all secure PL1 modes (Monitor,
		 * System, SVC, Abort, UND, IRQ and FIQ modes) execute at EL3.
		 *
		 * The PL1&0 translation regime in AArch32 behaves like the
		 * EL1&0 regime in AArch64 except for the XN bits, but we set
		 * and unset them at the same time, so there's no difference in
		 * practice.
		 */
		return 1U;
	}
}

/*******************************************************************************
 * Function for enabling the MMU in PL1 or PL2, assuming that the page tables
 * have already been created.
 ******************************************************************************/
void setup_mmu_cfg(uint64_t *params, unsigned int flags,
		   const uint64_t *base_table, unsigned long long max_pa,
		   uintptr_t max_va, __unused int xlat_regime)
{
	uint64_t mair, ttbr0;
	uint32_t ttbcr;

	/* Set attributes in the right indices of the MAIR */
	mair = MAIR0_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
	mair |= MAIR0_ATTR_SET(ATTR_IWBWA_OWBWA_NTR,
			ATTR_IWBWA_OWBWA_NTR_INDEX);
	mair |= MAIR0_ATTR_SET(ATTR_NON_CACHEABLE,
			ATTR_NON_CACHEABLE_INDEX);

	/*
	 * Configure the control register for stage 1 of the PL1&0 or EL2
	 * translation regimes.
	 */

	/* Use the Long-descriptor translation table format. */
	ttbcr = TTBCR_EAE_BIT;

	if (xlat_regime == EL1_EL0_REGIME) {
		assert(IS_IN_SVC() || IS_IN_MON());
		/*
		 * Disable translation table walk for addresses that are
		 * translated using TTBR1. Therefore, only TTBR0 is used.
		 */
		ttbcr |= TTBCR_EPD1_BIT;
	} else {
		assert(xlat_regime == EL2_REGIME);
		assert(IS_IN_HYP());

		/*
		 * Set HTCR bits as well. Set HTTBR table properties
		 * as Inner & outer WBWA & shareable.
		 */
		ttbcr |= HTCR_RES1 |
			 HTCR_SH0_INNER_SHAREABLE | HTCR_RGN0_OUTER_WBA |
			 HTCR_RGN0_INNER_WBA;
	}

	/*
	 * Limit the input address ranges and memory region sizes translated
	 * using TTBR0 to the given virtual address space size, if smaller than
	 * 32 bits.
	 */
	if (max_va != UINT32_MAX) {
		uintptr_t virtual_addr_space_size = max_va + 1U;

		assert(virtual_addr_space_size >=
			xlat_get_min_virt_addr_space_size());
		assert(virtual_addr_space_size <=
			MAX_VIRT_ADDR_SPACE_SIZE);
		assert(IS_POWER_OF_TWO(virtual_addr_space_size));

		/*
		 * __builtin_ctzll(0) is undefined but here we are guaranteed
		 * that virtual_addr_space_size is in the range [1, UINT32_MAX].
		 */
		int t0sz = 32 - __builtin_ctzll(virtual_addr_space_size);

		ttbcr |= (uint32_t) t0sz;
	}

	/*
	 * Set the cacheability and shareability attributes for memory
	 * associated with translation table walks using TTBR0.
	 */
	if ((flags & XLAT_TABLE_NC) != 0U) {
		/* Inner & outer non-cacheable non-shareable. */
		ttbcr |= TTBCR_SH0_NON_SHAREABLE | TTBCR_RGN0_OUTER_NC |
			TTBCR_RGN0_INNER_NC;
	} else {
		/* Inner & outer WBWA & shareable. */
		ttbcr |= TTBCR_SH0_INNER_SHAREABLE | TTBCR_RGN0_OUTER_WBA |
			TTBCR_RGN0_INNER_WBA;
	}

	/* Set TTBR0 bits as well */
	ttbr0 = (uint64_t)(uintptr_t) base_table;

	if (is_armv8_2_ttcnp_present()) {
		/* Enable CnP bit so as to share page tables with all PEs. */
		ttbr0 |= TTBR_CNP_BIT;
	}

	/* Now populate MMU configuration */
	params[MMU_CFG_MAIR] = mair;
	params[MMU_CFG_TCR] = (uint64_t) ttbcr;
	params[MMU_CFG_TTBR0] = ttbr0;
}